Loader

Pathways

PathWhiz ID Pathway Meta Data

PW500973

Pw500973 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Helicobacter bilis ATCC 43879
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW499145

Pw499145 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Bacteroides sp. 1_1_30
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW499948

Pw499948 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Prevotella nanceiensis DSM 19126 = JCM 15639
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW501375

Pw501375 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Proteus mirabilis ATCC 29906
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW498875

Pw498875 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Bacteroides nordii CL02T12C05
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW499056

Pw499056 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Bacteroides uniformis ATCC 8492
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW500923

Pw500923 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Campylobacter upsaliensis JV21
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW500081

Pw500081 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Alistipes onderdonkii WAL 8169 = DSM 19147
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW497803

Pw497803 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Salmonella paratyphi B (strain ATCC BAA-1250 / SPB7)
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide

PW501320

Pw501320 View Pathway
metabolic

Allantoin Degradation (Anaerobic)

Hafnia alvei ATCC 51873
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate. S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate. It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate. The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide