Loader

Pathways

PathWhiz ID Pathway Meta Data

PW685941

Pw685941 View Pathway
metabolic

Uracil Degradation III

Neisseria subflava NJ9703
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW491293

Pw491293 View Pathway
metabolic

Uracil Degradation III

Prevotella loescheii DSM 19665 = JCM 12249 = ATCC 15930
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW685954

Pw685954 View Pathway
metabolic

Uracil Degradation III

Helicobacter canadensis MIT 98-5491
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW685922

Pw685922 View Pathway
metabolic

Uracil Degradation III

Parabacteroides sp. D13
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW685939

Pw685939 View Pathway
metabolic

Uracil Degradation III

Neisseria cinerea ATCC 14685
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW685969

Pw685969 View Pathway
metabolic

Uracil Degradation III

Cedecea davisae DSM 4568
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW686029

Pw686029 View Pathway
metabolic

Uracil Degradation III

Roseburia inulinivorans DSM 16841
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW685977

Pw685977 View Pathway
metabolic

Uracil Degradation III

Trabulsiella guamensis ATCC 49490
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW490145

Pw490145 View Pathway
metabolic

Uracil Degradation III

Escherichia coli W
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.

PW492783

Pw492783 View Pathway
metabolic

Uracil Degradation III

Vibrio fluvialis PG41
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.