
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW499301 |
Allantoin Degradation (Anaerobic)Bacteroides sp. 4_1_36
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 04, 2025 at 18:44 Last Updated: February 04, 2025 at 18:44 |
PW686178 |
Allantoin Degradation (Anaerobic)Helicobacter cinaedi CCUG 18818 = ATCC BAA-847
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 05, 2025 at 09:17 Last Updated: February 05, 2025 at 09:17 |
PW500285 |
Allantoin Degradation (Anaerobic)Cetobacterium somerae ATCC BAA-474
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 05, 2025 at 02:10 Last Updated: February 05, 2025 at 02:10 |
PW500925 |
Allantoin Degradation (Anaerobic)Campylobacter showae CSUNSWCD
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 05, 2025 at 08:43 Last Updated: February 05, 2025 at 08:43 |
PW495607 |
Allantoin Degradation (Anaerobic)Escherichia coli (strain K12)
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 03, 2025 at 12:31 Last Updated: February 03, 2025 at 12:31 |
PW496410 |
Allantoin Degradation (Anaerobic)Prevotella copri
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 03, 2025 at 21:54 Last Updated: February 03, 2025 at 21:54 |
PW499464 |
Allantoin Degradation (Anaerobic)Odoribacter laneus YIT 12061
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 04, 2025 at 19:52 Last Updated: February 04, 2025 at 19:52 |
PW499541 |
Allantoin Degradation (Anaerobic)Porphyromonas uenonis DSM 23387 = JCM 13868
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 04, 2025 at 20:23 Last Updated: February 04, 2025 at 20:23 |
PW500778 |
Allantoin Degradation (Anaerobic)Neisseria macacae ATCC 33926
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 05, 2025 at 07:14 Last Updated: February 05, 2025 at 07:14 |
PW686205 |
Allantoin Degradation (Anaerobic)Providencia rustigianii DSM 4541
Allantoin can be degraded in anaerobic conditions. The first step involves allantoin being degraded by an allantoinase resulting in an allantoate. This compound in turn is metabolized by reacting with water and 2 hydrogen ions through an allantoate amidohydrolase resulting in the release of a carbon dioxide, ammonium and an S-ureidoglycine. The latter compund is further degrades through a S-ureidoglycine aminohydrolase resulting in the release of an ammonium and an S-ureidoglycolate.
S-ureidoglycolate can be metabolized into oxalurate by two different reactions. The first reactions involves a NAD driven ureidoglycolate dehydrogenase resulting in the release of a hydrogen ion , an NADH and a oxalurate. On the other hand S-ureidoglycolate can react with NADP resulting in the release of an NADPH, a hydroge ion and an oxalurate.
It is hypothesized that oxalurate can interact with a phosphate and release a a carbamoyl phosphate and an oxamate.
The carbamoyl phosphate can be further degraded by reacting with an ADP, and a hydrogen ion through a carbamate kinase resulting in the release of an ammonium , ATP and carbon dioxide
|
Creator: Julia Wakoli Created On: February 05, 2025 at 13:59 Last Updated: February 05, 2025 at 13:59 |