
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW512643 |
ADP-L-glycero-beta-D-manno-heptose BiosynthesisKluyvera ascorbata ATCC 33433
ADP-L-glycero-β-D-manno-heptose is a precursor for the inner core lipopolysaccharide (LPS), which is the outer membrane of Gram-negative bacteria. LPS is consisted of lipid A, a core oligosaccharide, and an O-specific polysaccharide (O antigen). This biosynthesis pathway starts with catalyzation of D-sedoheptulose 7-phosphate that produced from pentose phosphate pathway to form D-glycero-D-manno-heptose 7-phosphate by lysophospholipid acyltransferase. D-glycero-D-manno-heptose 7-phosphate later undergoes catalyze to form D-glycero-β-D-manno-heptose 1,7-bisphosphate by fused heptose 7-phosphate kinase (also known as heptose 1-phosphate adenyltransferase) that powered by ATP. D-glycero-β-D-manno-heptose 1,7-bisphosphate will go through hydrolysis by D,D-heptose 1,7-bisphosphate phosphatase to form D-glycero-β-D-manno-heptose 1-phosphate and a phosphate. D-glycero-β-D-manno-heptose 1-phosphate will form ADP-D-Glycero-D-manno-heptose and diphosphate, and eventually ADP-D-Glycero-D-manno-heptose will be biotransformed to ADP-L-glycero-β-D-manno-heptose as the end product of this pathway by ADP-L-glycero-D-mannoheptose-6-epimerase.
|
Creator: Julia Wakoli Created On: February 09, 2025 at 20:02 Last Updated: February 09, 2025 at 20:02 |
PW511330 |
ADP-L-glycero-beta-D-manno-heptose BiosynthesisFusobacterium gonidiaformans 3-1-5R
ADP-L-glycero-β-D-manno-heptose is a precursor for the inner core lipopolysaccharide (LPS), which is the outer membrane of Gram-negative bacteria. LPS is consisted of lipid A, a core oligosaccharide, and an O-specific polysaccharide (O antigen). This biosynthesis pathway starts with catalyzation of D-sedoheptulose 7-phosphate that produced from pentose phosphate pathway to form D-glycero-D-manno-heptose 7-phosphate by lysophospholipid acyltransferase. D-glycero-D-manno-heptose 7-phosphate later undergoes catalyze to form D-glycero-β-D-manno-heptose 1,7-bisphosphate by fused heptose 7-phosphate kinase (also known as heptose 1-phosphate adenyltransferase) that powered by ATP. D-glycero-β-D-manno-heptose 1,7-bisphosphate will go through hydrolysis by D,D-heptose 1,7-bisphosphate phosphatase to form D-glycero-β-D-manno-heptose 1-phosphate and a phosphate. D-glycero-β-D-manno-heptose 1-phosphate will form ADP-D-Glycero-D-manno-heptose and diphosphate, and eventually ADP-D-Glycero-D-manno-heptose will be biotransformed to ADP-L-glycero-β-D-manno-heptose as the end product of this pathway by ADP-L-glycero-D-mannoheptose-6-epimerase.
|
Creator: Julia Wakoli Created On: February 09, 2025 at 13:00 Last Updated: February 09, 2025 at 13:00 |
PW512941 |
ADP-L-glycero-beta-D-manno-heptose BiosynthesisSerratia marcescens subsp. marcescens Db11
ADP-L-glycero-β-D-manno-heptose is a precursor for the inner core lipopolysaccharide (LPS), which is the outer membrane of Gram-negative bacteria. LPS is consisted of lipid A, a core oligosaccharide, and an O-specific polysaccharide (O antigen). This biosynthesis pathway starts with catalyzation of D-sedoheptulose 7-phosphate that produced from pentose phosphate pathway to form D-glycero-D-manno-heptose 7-phosphate by lysophospholipid acyltransferase. D-glycero-D-manno-heptose 7-phosphate later undergoes catalyze to form D-glycero-β-D-manno-heptose 1,7-bisphosphate by fused heptose 7-phosphate kinase (also known as heptose 1-phosphate adenyltransferase) that powered by ATP. D-glycero-β-D-manno-heptose 1,7-bisphosphate will go through hydrolysis by D,D-heptose 1,7-bisphosphate phosphatase to form D-glycero-β-D-manno-heptose 1-phosphate and a phosphate. D-glycero-β-D-manno-heptose 1-phosphate will form ADP-D-Glycero-D-manno-heptose and diphosphate, and eventually ADP-D-Glycero-D-manno-heptose will be biotransformed to ADP-L-glycero-β-D-manno-heptose as the end product of this pathway by ADP-L-glycero-D-mannoheptose-6-epimerase.
|
Creator: Julia Wakoli Created On: February 09, 2025 at 21:40 Last Updated: February 09, 2025 at 21:40 |
PW064823 |
signaling
AdiponectinHomo sapiens
|
Creator: Andrea Created On: July 27, 2018 at 04:59 Last Updated: July 27, 2018 at 04:59 |
PW146941 |
drug action
Adiphenine Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 19:24 Last Updated: October 07, 2023 at 19:24 |
PW121926 |
disease
Adenylosuccinate Lyase DeficiencyRattus norvegicus
Adenylosuccinate Lyase Deficiency. (Adenylosuccinase Deficiency ; Adenylosuccinate monophosphate lyase deficiency) is a rare autosomal recessive disease caused by a mutation in the ADSL gene which codes for adenylosuccinate lyase. A deficiency in this enzyme results in accumulation of succinyladenosine in plasma, spinal fluid, and urine. Symptoms, which present at birth, include hyptonia, seizures, mental retardation, and encephalopathy. Treatment includes allopurinol.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:51 Last Updated: September 10, 2018 at 15:51 |
PW121700 |
disease
Adenylosuccinate Lyase DeficiencyMus musculus
Adenylosuccinate Lyase Deficiency. (Adenylosuccinase Deficiency ; Adenylosuccinate monophosphate lyase deficiency) is a rare autosomal recessive disease caused by a mutation in the ADSL gene which codes for adenylosuccinate lyase. A deficiency in this enzyme results in accumulation of succinyladenosine in plasma, spinal fluid, and urine. Symptoms, which present at birth, include hyptonia, seizures, mental retardation, and encephalopathy. Treatment includes allopurinol.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:49 Last Updated: September 10, 2018 at 15:49 |
PW127289 |
disease
Adenylosuccinate Lyase DeficiencyHomo sapiens
Adenylosuccinate Lyase Deficiency. (Adenylosuccinase Deficiency ; Adenylosuccinate monophosphate lyase deficiency) is a rare autosomal recessive disease caused by a mutation in the ADSL gene which codes for adenylosuccinate lyase. A deficiency in this enzyme results in accumulation of succinyladenosine in plasma, spinal fluid, and urine. Symptoms, which present at birth, include hyptonia, seizures, mental retardation, and encephalopathy. Treatment includes allopurinol.
|
Creator: Ray Kruger Created On: December 01, 2022 at 11:16 Last Updated: December 01, 2022 at 11:16 |
PW000076 |
disease
Adenylosuccinate Lyase DeficiencyHomo sapiens
Adenylosuccinate Lyase Deficiency. (Adenylosuccinase Deficiency ; Adenylosuccinate monophosphate lyase deficiency) is a rare autosomal recessive disease caused by a mutation in the ADSL gene which codes for adenylosuccinate lyase. A deficiency in this enzyme results in accumulation of succinyladenosine in plasma, spinal fluid, and urine. Symptoms, which present at birth, include hyptonia, seizures, mental retardation, and encephalopathy. Treatment includes allopurinol.
|
Creator: WishartLab Created On: August 01, 2013 at 15:52 Last Updated: August 01, 2013 at 15:52 |
PW484202 |
Adenosylcobalamin Salvage from CobinamideEscherichia coli IAI39
Cobinamide is incorporated from the extracellular space through a transport system into the cytosol. Once inside the cytosol, cobinamide interacts with ATP through a cobinamide adenosyl transferase resulting in the release of a triphosphate and an adenosylcobinamide. The latter compound is then phosphorylated through an ATP-dependent cobinamide kinase resulting in the release of ADP, a hydrogen ion and adenosyl-cobinamide phosphate. This last compound then interacts with GTP and a hydrogen ion through a cobinamide-P guanylyltransferase resulting in the release of a pyrophosphate and an adenosylcobinamide-GDP.
A dimethylbenzimidazole interacts with a nicotinate D-ribonucleotide through a nicotinate-nucleotide dimethylbenzumidazole phosphoribosyltransferase resulting in the release of a nicotinate, a hydrogen ion and an alpha-ribazole 5' phosphate.
The adenosylcobinamide-GDP and the alpha-ribazole 5' phosphate interact together through a cobalamin 5' phosphate synthase resulting in the release of a hydrogen ion, a GMP and Adenosylcobalamin 5'-phosphate. The latter compound then interacts with a water molecule through an adenosylcbalamin 5' phosphate phosphatase resulting in the release of a phosphate and a coenzyme B12.
Likewise a cobalamin molecule can interact with ATP through a cobalamin adenosyltransferase resulting in the release of a triphosphate and a coenzyme B12
|
Creator: Julia Wakoli Created On: January 29, 2025 at 06:48 Last Updated: January 29, 2025 at 06:48 |