
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW686022 |
Uracil Degradation IIIAcetomicrobium hydrogeniformans
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Julia Wakoli Created On: February 01, 2025 at 09:14 Last Updated: February 01, 2025 at 09:14 |
PW002026 |
Uracil Degradation IIIEscherichia coli
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Ana Marcu Created On: October 01, 2015 at 14:20 Last Updated: October 01, 2015 at 14:20 |
PW685846 |
Uracil Degradation IIIEscherichia coli (strain UTI89 / UPEC)
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Julia Wakoli Created On: January 30, 2025 at 18:17 Last Updated: January 30, 2025 at 18:17 |
PW490710 |
Uracil Degradation IIIBacteroides graminisolvens DSM 19988 = JCM 15093
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Julia Wakoli Created On: January 31, 2025 at 13:57 Last Updated: January 31, 2025 at 13:57 |
PW491945 |
Uracil Degradation IIIEikenella corrodens ATCC 23834
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Julia Wakoli Created On: February 01, 2025 at 00:36 Last Updated: February 01, 2025 at 00:36 |
PW492583 |
Uracil Degradation IIIPlesiomonas shigelloides 302-73
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Julia Wakoli Created On: February 01, 2025 at 07:02 Last Updated: February 01, 2025 at 07:02 |
PW492663 |
Uracil Degradation IIIAcinetobacter junii SH205
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Julia Wakoli Created On: February 01, 2025 at 07:50 Last Updated: February 01, 2025 at 07:50 |
PW685977 |
Uracil Degradation IIITrabulsiella guamensis ATCC 49490
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Julia Wakoli Created On: February 01, 2025 at 05:24 Last Updated: February 01, 2025 at 05:24 |
PW488864 |
Uracil Degradation IIIBacteroides clarus YIT 12056
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Julia Wakoli Created On: January 30, 2025 at 20:48 Last Updated: January 30, 2025 at 20:48 |
PW685896 |
Uracil Degradation IIIBacteroides sp. 2_1_22
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
|
Creator: Julia Wakoli Created On: January 31, 2025 at 15:12 Last Updated: January 31, 2025 at 15:12 |