
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW064417 |
2,3-ButanediolEscherichia coli (strain K12)
Metabolic pathway for 2,3-Butanediol synthesis in E. coli AV12 by expresing an sinthetic operon.
|
Creator: Guest: Anonymous Created On: October 29, 2017 at 01:54 Last Updated: October 29, 2017 at 01:54 |
PW064418 |
2,3-Butanediol (2,3-BDO)Escherichia coli (strain K12)
|
Creator: Guest: Anonymous Created On: October 29, 2017 at 02:48 Last Updated: October 29, 2017 at 02:48 |
PW000751 |
2,3-Dihydroxybenzoate BiosynthesisEscherichia coli
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: miguel ramirez Created On: January 13, 2015 at 15:49 Last Updated: January 13, 2015 at 15:49 |
PW370797 |
2,3-Dihydroxybenzoate BiosynthesisVibrio fluvialis PG41
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 07:07 Last Updated: November 24, 2024 at 07:07 |
PW370780 |
2,3-Dihydroxybenzoate BiosynthesisAcinetobacter junii SH205
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 06:51 Last Updated: November 24, 2024 at 06:51 |
PW370792 |
2,3-Dihydroxybenzoate BiosynthesisGrimontia hollisae CIP 101886
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 07:02 Last Updated: November 24, 2024 at 07:02 |
PW370754 |
2,3-Dihydroxybenzoate BiosynthesisProvidencia rettgeri DSM 1131
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 06:20 Last Updated: November 24, 2024 at 06:20 |
PW370805 |
2,3-Dihydroxybenzoate BiosynthesisAcetomicrobium hydrogeniformans
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 07:16 Last Updated: November 24, 2024 at 07:16 |
PW370824 |
2,3-Dihydroxybenzoate BiosynthesisPseudoflavonifractor capillosus ATCC 29799
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 24, 2024 at 07:35 Last Updated: November 24, 2024 at 07:35 |
PW370007 |
2,3-Dihydroxybenzoate BiosynthesisBacteroides intestinalis
2,3-Dihydroxybenzoate, also known as 2-pyrochatechuic acid or hypogallic acid, is a phenol compound found in bacteria that can be a component of siderophores. These are compounds that strongly bind iron molecules and allow them to be taken up and used by the bacteria in cases of iron scarcity. An example of a siderophore in E. coli is enterobactin, which can be produced from 2,3-dihydroxybenzoate as part of the enterobactin biosynthesis pathway.
In this pathway, chorismate, which is the product of the chorismate biosynthesis pathway, is converted to isochorismate in a reaction catalyzed by isochorismate synthase. Following this, a water molecule is added to isochorismate by isochorismatase, which then removes a pyruvic acid molecule as a byproduct, and forms (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate. Finally, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase catalyzes the dehydrogenation of (2S, 3S)-2,3-dihydroxy-2,3-dihydrobenzoate into 2-pyrocatechuric acid (2,3-dihydroxybenzoate), using NAD as a cofactor. 2-Pyrocatechuric acid can then be used as a part of the enterobactin biosynthesis pathway, or it can be converted to 2-carboxymuconate by blue copper oxidase cueO.
|
Creator: Julia Wakoli Created On: November 23, 2024 at 19:30 Last Updated: November 23, 2024 at 19:30 |