Pathways

PathWhiz ID Pathway Meta Data

PW064753

Pw064753 View Pathway
signaling

chebulagic acid Metabolism

Homo sapiens

PW013304

Pw013304 View Pathway
metabolic

Metabolic pathways

Mus musculus
bdnf symthesis

PW002064

Pw002064 View Pathway
metabolic

1,6-Anhydro-N-acetylmuramic Acid Recycling

Escherichia coli
Anhydromuropeptides (mainly GlcNAc-1,6-anhMurNAc-L-Ala-γ-D-Glu-DAP-D-Ala) are steadily released during growth by lytic transglycosylases and endopeptidases and imported back into the cytoplasm for recycling. During bacterial growth, a very large proportion of the peptidoglycan polymer is degraded and reused in a process termed cell wall recycling. For example, the Gram-negative bacterium Escherichia coli recovers about half of its cell wall within one generation. The anhydromuropeptides are imported by the ampG-encoded muropeptide:H+ symporter. Once inside the cytoplasm, the anhydromuropeptides are hydrolyzed by N-acetylmuramoyl-L-alanine amidase (ampD), β-N-acetylhexosaminidase (nagZ) and L,D-carboxypeptidase A (ldcA), yielding N-acetyl-β-D-glucosamine, 1,6-anhydro-N-acetyl-β-muramate, L-alanyl-γ-D-glutamyl-meso-diaminopimelate and D-alanine. 1,6-anhydro-N-acetyl-β-muramate is phosphorylated by anhydro-N-acetylmuramic acid kinase (anmK) and then converted into N-acetyl-D-glucosamine 6-phosphate by N-acetylmuramic acid 6-phosphate etherase (murQ). This is a branch point, as this compound could be directed either for further degradation or for recycling into new peptidoglycan monomers, as described in this pathway. The final product of this pathway, UDP-N-acetyl-α-D-muramate, is one of the precursors for peptidoglycan biosynthesis. The tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, which is generated by muramoyltetrapeptide carboxypeptidase, can be degraded further, as described in muropeptide degradation. However, the vast majority is recycled by muropeptide ligase (mpl). This enzyme is a dedicated recycling enzyme that attaches the recovered Ala-Glu-DAP tripeptide to UDP-N-acetyl-α-D-muramate, thereby substituting three amino acid ligases of the peptidoglycan de novobiosynthetic pathway. Although exogenously provided 1,6-anhydro-N-acetyl-β-muramate can be taken up by Escherichia coli, it can not serve as the sole source of carbon for growth, suggesting that it may be toxic to the cell. (EcoCyc)

PW064700

Pw064700 View Pathway
signaling

1.      Barrier

Homo sapiens

PW000551

Pw000551 View Pathway
disease

11-beta-Hydroxylase Deficiency (CYP11B1)

Homo sapiens
Congenital adrenal hyperplasia (CAH) due to 11-beta-hydroxylase deficiency is one of a group of disorders (collectively called congenital adrenal hyperplasia) that affect the adrenal glands. The adrenal glands are located on top of the kidneys and produce a variety of hormones that regulate many essential functions in the body. In people with CAH due to 11-beta-hydroxylase deficiency, the adrenal glands produce excess androgens, which are male sex hormones. There are two types of CAH due to 11-beta-hydroxylase deficiency, the classic form and the non-classic form. The classic form is the more severe of the two types.

PW122119

Pw122119 View Pathway
disease

11-beta-Hydroxylase Deficiency (CYP11B1)

Rattus norvegicus
Congenital adrenal hyperplasia (CAH) due to 11-beta-hydroxylase deficiency is one of a group of disorders (collectively called congenital adrenal hyperplasia) that affect the adrenal glands. The adrenal glands are located on top of the kidneys and produce a variety of hormones that regulate many essential functions in the body. In people with CAH due to 11-beta-hydroxylase deficiency, the adrenal glands produce excess androgens, which are male sex hormones. There are two types of CAH due to 11-beta-hydroxylase deficiency, the classic form and the non-classic form. The classic form is the more severe of the two types.

PW121895

Pw121895 View Pathway
disease

11-beta-Hydroxylase Deficiency (CYP11B1)

Mus musculus
Congenital adrenal hyperplasia (CAH) due to 11-beta-hydroxylase deficiency is one of a group of disorders (collectively called congenital adrenal hyperplasia) that affect the adrenal glands. The adrenal glands are located on top of the kidneys and produce a variety of hormones that regulate many essential functions in the body. In people with CAH due to 11-beta-hydroxylase deficiency, the adrenal glands produce excess androgens, which are male sex hormones. There are two types of CAH due to 11-beta-hydroxylase deficiency, the classic form and the non-classic form. The classic form is the more severe of the two types.

PW000542

Pw000542 View Pathway
disease

17-alpha-Hydroxylase Deficiency (CYP17)

Homo sapiens
Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the biochemical steps of production of cortisol from cholesterol by the adrenal glands (steroidogenesis). Most of these conditions involve excessive or deficient production of sex steroids and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults.

PW121886

Pw121886 View Pathway
disease

17-alpha-Hydroxylase Deficiency (CYP17)

Mus musculus
Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the biochemical steps of production of cortisol from cholesterol by the adrenal glands (steroidogenesis). Most of these conditions involve excessive or deficient production of sex steroids and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults.

PW122110

Pw122110 View Pathway
disease

17-alpha-Hydroxylase Deficiency (CYP17)

Rattus norvegicus
Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the biochemical steps of production of cortisol from cholesterol by the adrenal glands (steroidogenesis). Most of these conditions involve excessive or deficient production of sex steroids and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults.