Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Ketone Body Metabolism
Homo sapiens
Metabolic Pathway
Ketone bodies are consisted of acetone, beta-hydroxybutyrate and acetoacetate. In liver cells' mitochondria, acetyl-CoA can synthesize acetoacetate and beta-hydroxybutyrate; and spontaneous decarboxylation of acetoacetate will form acetone. Metabolism of ketone body (also known as ketogenesis) contains several reactions. Acetoacetic acid (acetoacetate) will be catalyzed to form acetoacetyl-CoA irreversibly by 3-oxoacid CoA-transferase 1 that also coupled with interconversion of succinyl-CoA and succinic acid. Acetoacetic acid can also be catalyzed by mitochondrial D-beta-hydroxybutyrate dehydrogenase to form (R)-3-Hydroxybutyric acid with NADH. Ketogenesis occurs mostly during fasting and starvation. Stored fatty acids will be broken down and mobilized to produce large amount of acetyl-CoA for ketogenesis in liver, which can reduce the demand of glucose for other tissues. Acetone cannot be converted back to acetyl-CoA; therefore, they are either breathed out through the lungs or excreted in urine.
References
Ketone Body Metabolism References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings