Loading Pathway... 
Error: Pathway image not found.
Hide 
    Pathway Description
      Glycolysis and Pyruvate Dehydrogenase
Escherichia coli
          Metabolic Pathway
          
        
          Fructose metabolism begins with the transport of beta-D-glucose 6-phosphate through a glucose PTS permease. This compound is isomerized by a glucose-6-phosphate isomerase resulting in fructose 6-phosphate. This compound can be phosphorylated by two different enzymes: a pyridoxal phosphatase/fructose 1,6-bisphosphatase or an ATP-driven 6-phosphofructokinase-1, resulting in fructose 1,6-biphosphate. This compound can either react with a fructose bisphosphate aldolase class 1 resulting in D-glyceraldehyde 3-phosphate and dihydroxyacetone phosphate or through a fructose biphosphate aldolase class 2 resulting in D-glyceraldehyde 3-phosphate. This compound can then either react in a reversible triosephosphate isomerase resulting in dihydroxyacetone phosphate or react with a phosphate through an NAD-dependent glyceraldehyde 3-phosphate dehydrogenase resulting in glyceric acid 1,3-biphosphate. This compound is dephosphorylated by a phosphoglycerate kinase resulting in 3-phosphoglyceric acid. This compound, in turn, can either react with a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase or a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase resulting in 2-phospho-D-glyceric acid. This compound interacts with an enolase resulting in a phosphoenolpyruvic acid and water. Phosphoenolpyruvic acid can react either through an AMP-driven phosphoenoylpyruvate synthase or an ADP-driven pyruvate kinase protein complex resulting in pyruvic acid. The pyruvic acid reacts with CoA through an NAD-driven pyruvate dehydrogenase complex resulting in carbon dioxide and an acetyl-CoA which gets incorporated into the TCA cycle pathway.
        
      References
      
      Glycolysis and Pyruvate Dehydrogenase References
Hollinshead WD, Rodriguez S, Martin HG, Wang G, Baidoo EE, Sale KL, Keasling JD, Mukhopadhyay A, Tang YJ: Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Deltapfk mutants. Biotechnol Biofuels. 2016 Oct 10;9:212. doi: 10.1186/s13068-016-0630-y. eCollection 2016.
                  Pubmed: 27766116
              Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
              This pathway was propagated using PathWhiz - 
                Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
              
            Propagated from PW000785
        Highlighted elements will appear in red.
        
          
          
        
      
      Highlight Compounds
      Highlight Proteins
      Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
        
          
          
        
      
      Visualize Compound Data
      Visualize Protein Data
      Downloads
      
    Settings