Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Cysteine Biosynthesis
Escherichia coli
Metabolic Pathway
The pathway of cysteine biosynthesis is a two-step conversion starting from L-serine and yielding L-cysteine. L-serine biosynthesis is shown for context. L-cysteine can also be synthesized from sulfate derivatives. The process through L-serine involves a serine acetyltransferase that produces a O-acetylserine which reacts together with hydrogen sulfide through a cysteine synthase complex in order to produce L-cysteine and acetic acid. Hydrogen sulfide is produced from a sulfate. Sulfate reacts with sulfate adenylyltransferase to produce adenosine phosphosulfate. This compound in turn is phosphorylated through a adenylyl-sulfate kinase into a phosphoadenosine phosphosulfate which in turn reacts with a phosphoadenosine phosphosulfate reductase to produce a sulfite. The sulfite reacts with a sulfite reductase to produce the hydrogen sulfide. This pathway shows the second step of cysteine biosynthesis (at genetic level). Both cysteine synthase isozymes undergo the positive control by the cysteine-responsive transcription factor CysB. Only cysteine synthase A (CysK) forms a complex with serine acetyltransferase and it is the only cysteine synthase that is required for cell viability with cysteine-free medium. Cysteine synthases may also work as the sulfur scavenging systemfor sulfur starvation by taking sulfur off of L-cysteine.
References
Cysteine Biosynthesis References
Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A: Effect of chromate stress on Escherichia coli K-12. J Bacteriol. 2006 May;188(9):3371-81. doi: 10.1128/JB.188.9.3371-3381.2006.
Pubmed: 16621832
Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S: Effect of cysteine desulfhydrase gene disruption on L-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol. 2003 Aug;62(2-3):239-43. doi: 10.1007/s00253-003-1262-2. Epub 2003 Mar 20.
Pubmed: 12883870
Awano N, Wada M, Mori H, Nakamori S, Takagi H: Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol. 2005 Jul;71(7):4149-52. doi: 10.1128/AEM.71.7.4149-4152.2005.
Pubmed: 16000837
Baca-DeLancey RR, South MM, Ding X, Rather PN: Escherichia coli genes regulated by cell-to-cell signaling. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4610-4.
Pubmed: 10200310
Boronat A, Britton P, Jones-Mortimer MC, Kornberg HL, Lee LG, Murfitt D, Parra F: Location on the Escherichia coli genome of a gene specifying O-acetylserine (thiol)-lyase. J Gen Microbiol. 1984 Mar;130(3):673-85. doi: 10.1099/00221287-130-3-673.
Pubmed: 6374031
Byrne CR, Monroe RS, Ward KA, Kredich NM: DNA sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH. J Bacteriol. 1988 Jul;170(7):3150-7.
Pubmed: 3290198
Claus MT, Zocher GE, Maier TH, Schulz GE: Structure of the O-acetylserine sulfhydrylase isoenzyme CysM from Escherichia coli. Biochemistry. 2005 Jun 21;44(24):8620-6. doi: 10.1021/bi050485+.
Pubmed: 15952768
Denk D, Bock A: L-cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant. J Gen Microbiol. 1987 Mar;133(3):515-25. doi: 10.1099/00221287-133-3-515.
Pubmed: 3309158
Diaz-Mejia JJ, Babu M, Emili A: Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev. 2009 Jan;33(1):66-97. doi: 10.1111/j.1574-6976.2008.00141.x. Epub 2008 Nov 27.
Pubmed: 19054114
Diner EJ, Beck CM, Webb JS, Low DA, Hayes CS: Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Genes Dev. 2012 Mar 1;26(5):515-25. doi: 10.1101/gad.182345.111. Epub 2012 Feb 14.
Pubmed: 22333533
Feldman-Salit A, Wirtz M, Hell R, Wade RC: A mechanistic model of the cysteine synthase complex. J Mol Biol. 2009 Feb 13;386(1):37-59. doi: 10.1016/j.jmb.2008.08.075. Epub 2008 Sep 5.
Pubmed: 18801369
Fimmel AL, Loughlin RE: Isolation and characterization of cysK mutants of Escherichia coli K12. J Gen Microbiol. 1977 Nov;103(1):37-43. doi: 10.1099/00221287-103-1-37.
Pubmed: 338862
Flint DH, Tuminello JF, Miller TJ: Studies on the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase in escherichia coli crude extract. Isolation of O-acetylserine sulfhydrylases A and B and beta-cystathionase based on their ability to mobilize sulfur from cysteine and to participate in Fe-S cluster synthesis. J Biol Chem. 1996 Jul 5;271(27):16053-67.
Pubmed: 8663055
Fuentes DE, Fuentes EL, Castro ME, Perez JM, Araya MA, Chasteen TG, Pichuantes SE, Vasquez CC: Cysteine metabolism-related genes and bacterial resistance to potassium tellurite. J Bacteriol. 2007 Dec;189(24):8953-60. doi: 10.1128/JB.01252-07. Epub 2007 Oct 19.
Pubmed: 17951385
Gao Y, Peng X, Zhang J, Zhao J, Li Y, Li Y, Li B, Hu Y, Chai Z: Cellular response of E. coli upon Hg2+ exposure--a case study of advanced nuclear analytical approach to metalloproteomics. Metallomics. 2013 Jun;5(7):913-9. doi: 10.1039/c3mt20279h.
Pubmed: 23771180
The Gene Ontology's Reference Genome Project: a unified framework for functional annotation across species. PLoS Comput Biol. 2009 Jul;5(7):e1000431. doi: 10.1371/journal.pcbi.1000431. Epub 2009 Jul 3.
Pubmed: 19578431
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from PW000800
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings