Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Galactitol and Galactonate Degradation
Escherichia coli
Metabolic Pathway
Escherichia coli can solely use D-galactonate as a carbon and energy source. The initial step, after the transport of galactonic acid into the cell is the dehydration of D-galactonate to 2-dehydro-3-deoxy-D-galactonate by D-galactonate dehydratase. Subsequent phosphorylation by 2-dehydro-3-deoxygalactonate kinase and aldol cleavage by 2-oxo-3-deoxygalactonate 6-phosphate aldolase produces pyruvate and D-glyceraldehyde-3-phosphate, which enter central metabolism. Galactitol can also be utilized by E. coli K-12 as the sole source of carbon and energy. Each enters the cell via a specific phosphotransferase system, so the first intracellular species is D-galactitol-1-phosphate or D-galactitol-6-phosphate, which are identical. This sugar alcohol phosphate becomes the substrate for a dehydrogenase that oxidizes its 2-alcohol group to a keto group. Galactitol-1-phosphate is dehydrogenated to tagatose-6-phosphate which is then acted on by a kinase and an aldose and eventually is converted to glycolysis intermediates.
References
Galactitol and Galactonate Degradation References
Babul J: Phosphofructokinases from Escherichia coli. Purification and characterization of the nonallosteric isozyme. J Biol Chem. 1978 Jun 25;253(12):4350-5.
Pubmed: 149128
Baez M, Cabrera R, Guixe V, Babul J: Unfolding pathway of the dimeric and tetrameric forms of phosphofructokinase-2 from Escherichia coli. Biochemistry. 2007 May 22;46(20):6141-8. doi: 10.1021/bi7002247. Epub 2007 May 1.
Pubmed: 17469854
Baez M, Merino F, Astorga G, Babul J: Uncoupling the MgATP-induced inhibition and aggregation of Escherichia coli phosphofructokinase-2 by C-terminal mutations. FEBS Lett. 2008 Jun 11;582(13):1907-12. doi: 10.1016/j.febslet.2008.05.011. Epub 2008 May 21.
Pubmed: 18501195
Baez M, Babul J: Reversible unfolding of dimeric phosphofructokinase-2 from Escherichia coli reveals a dominant role of inter-subunit contacts for stability. FEBS Lett. 2009 Jun 18;583(12):2054-60. doi: 10.1016/j.febslet.2009.05.034. Epub 2009 May 22.
Pubmed: 19465020
Baez M, Wilson CA, Babul J: Folding kinetic pathway of phosphofructokinase-2 from Escherichia coli: a homodimeric enzyme with a complex domain organization. FEBS Lett. 2011 Jul 21;585(14):2158-64. doi: 10.1016/j.febslet.2011.05.041. Epub 2011 May 27.
Pubmed: 21627967
Baez M, Wilson CA, Ramirez-Sarmiento CA, Guixe V, Babul J: Expanded monomeric intermediate upon cold and heat unfolding of phosphofructokinase-2 from Escherichia coli. Biophys J. 2012 Nov 21;103(10):2187-94. doi: 10.1016/j.bpj.2012.09.043. Epub 2012 Nov 20.
Pubmed: 23200052
Baez M, Cabrera R, Pereira HM, Blanco A, Villalobos P, Ramirez-Sarmiento CA, Caniuguir A, Guixe V, Garratt RC, Babul J: A ribokinase family conserved monovalent cation binding site enhances the MgATP-induced inhibition in E. coli phosphofructokinase-2. Biophys J. 2013 Jul 2;105(1):185-93. doi: 10.1016/j.bpj.2013.05.028.
Pubmed: 23823238
Bochkareva ES, Girshovich AS, Bibi E: Identification and characterization of the Escherichia coli stress protein UP12, a putative in vivo substrate of GroEL. Eur J Biochem. 2002 Jun;269(12):3032-40.
Pubmed: 12071968
Brinkkotter A, Kloss H, Alpert C, Lengeler JW: Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Mol Microbiol. 2000 Jul;37(1):125-35.
Pubmed: 10931310
Brinkkotter A, Shakeri-Garakani A, Lengeler JW: Two class II D-tagatose-bisphosphate aldolases from enteric bacteria. Arch Microbiol. 2002 May;177(5):410-9. doi: 10.1007/s00203-002-0406-6. Epub 2002 Mar 16.
Pubmed: 11976750
Cabrera R, Guixe V, Alfaro J, Rodriguez PH, Babul J: Ligand-dependent structural changes and limited proteolysis of Escherichia coli phosphofructokinase-2. Arch Biochem Biophys. 2002 Oct 15;406(2):289-95.
Pubmed: 12361717
Cabrera R, Caniuguir A, Ambrosio AL, Guixe V, Garratt RC, Babul J: Crystallization and preliminary crystallographic analysis of the tetrameric form of phosphofructokinase-2 from Escherichia coli, a member of the ribokinase family. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Sep 1;62(Pt 9):935-7. doi: 10.1107/S1744309106032246. Epub 2006 Aug 26.
Pubmed: 16946484
Cabrera R, Ambrosio AL, Garratt RC, Guixe V, Babul J: Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition. J Mol Biol. 2008 Nov 14;383(3):588-602. doi: 10.1016/j.jmb.2008.08.029. Epub 2008 Aug 22.
Pubmed: 18762190
Cabrera R, Babul J, Guixe V: Ribokinase family evolution and the role of conserved residues at the active site of the PfkB subfamily representative, Pfk-2 from Escherichia coli. Arch Biochem Biophys. 2010 Oct 1;502(1):23-30. doi: 10.1016/j.abb.2010.06.024. Epub 2010 Jun 25.
Pubmed: 20599671
Cabrera R, Baez M, Pereira HM, Caniuguir A, Garratt RC, Babul J: The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: kinetic and structural analysis of the allosteric ATP inhibition. J Biol Chem. 2011 Feb 18;286(7):5774-83. doi: 10.1074/jbc.M110.163162. Epub 2010 Dec 8.
Pubmed: 21147773
Caniuguir A, Cabrera R, Baez M, Vasquez CC, Babul J, Guixe V: Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 from Escherichia coli. FEBS Lett. 2005 Apr 25;579(11):2313-8. doi: 10.1016/j.febslet.2005.02.078.
Pubmed: 15848164
Daldal F, Fraenkel DG: Tn10 insertions in the pfkB region of Escherichia coli. J Bacteriol. 1981 Sep;147(3):935-43.
Pubmed: 6268614
Daldal F: Nucleotide sequence of gene pfkB encoding the minor phosphofructokinase of Escherichia coli K-12. Gene. 1984 Jun;28(3):337-42.
Pubmed: 6235149
Diaz-Mejia JJ, Babu M, Emili A: Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev. 2009 Jan;33(1):66-97. doi: 10.1111/j.1574-6976.2008.00141.x. Epub 2008 Nov 27.
Pubmed: 19054114
Cooper RA: The utilisation of D-galactonate and D-2-oxo-3-deoxygalactonate by Escherichia coli K-12. Biochemical and genetical studies. Arch Microbiol. 1978 Aug 1;118(2):199-206.
Pubmed: 211976
Deacon J, Cooper RA: D-Galactonate utilisation by enteric bacteria. The catabolic pathway in Escherichia coli. FEBS Lett. 1977 May 15;77(2):201-5.
Pubmed: 324806
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings