Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Starch and Sucrose Metabolism
Escherichia coli
Metabolic Pathway
The metabolism of starch and sucrose begins with D-fructose interacting with a D-glucose in a reversible reaction through a maltodextrin glucosidase resulting in a water molecule and a sucrose. D-fructose is phosphorylated through an ATP driven fructokinase resulting in the release of an ADP, a hydrogen ion and a Beta-D-fructofuranose 6-phosphate. This compound can also be introduced into the cytoplasm through either a mannose PTS permease or a hexose-6-phosphate:phosphate antiporter.
The Beta-D-fructofuranose 6-phosphate is isomerized through a phosphoglucose isomerase resulting in a Beta-D-glucose 6-phosphate. This compound can also be incorporated by glucose PTS permease or a hexose-6-phosphate:phosphate antiporter.
The beta-D-glucose 6 phosphate can also be produced by a D-glucose being phosphorylated by an ATP-driven glucokinase resulting in a ADP, a hydrogen ion and a Beta-D-glucose 6 phosphate.
The beta-D-glucose can produce alpha-D-glucose-1-phosphate by two methods:
1.-Beta-D-glucose is isomerized into an alpha-D-Glucose 6-phosphate and then interacts in a reversible reaction through a phosphoglucomutase-1 resulting in a alpha-D-glucose-1-phosphate.
2.-Beta-D-glucose interacts with a putative beta-phosphoglucomutase resulting in a Beta-D-glucose 1-phosphate. Beta-D-glucose 1-phosphate can be incorporated into the cytoplasm through a
glucose PTS permease. This compound is then isomerized into a Alpha-D-glucose-1-phosphate
The beta-D-glucose can cycle back into a D-fructose by first interacting with D-fructose in a reversible reaction through a Polypeptide: predicted glucosyltransferase resulting in the release of a phosphate and a sucrose. The sucrose then interacts in a reversible reaction with a water molecule through a maltodextrin glucosidase resulting in a D-glucose and a D-fructose.
Alpha-D-glucose-1-phosphate can produce glycogen in by two different sets of reactions:
1.-Alpha-D-glucose-1-phosphate interacts with a hydrogen ion and an ATP through a glucose-1-phosphate adenylyltransferase resulting in a pyrophosphate and an ADP-glucose. The ADP-glucose then interacts with an amylose through a glycogen synthase resulting in the release of an ADP and an Amylose. The amylose then interacts with 1,4-α-glucan branching enzyme resulting in glycogen
2.- Alpha-D-glucose-1-phosphate interacts with amylose through a maltodextrin phosphorylase resulting in a phosphate and a glycogen.
Alpha-D-glucose-1-phosphate can also interacts with UDP-galactose through a galactose-1-phosphate uridylyltransferase resulting in a galactose 1-phosphate and a Uridine diphosphate glucose. The UDP-glucose then interacts with an alpha-D-glucose 6-phosphate through a trehalose-6-phosphate synthase resulting in a uridine 5'-diphosphate, a hydrogen ion and a Trehalose 6- phosphate. The latter compound can also be incorporated into the cytoplasm through a trehalose PTS permease. Trehalose interacts with a water molecule through a trehalose-6-phosphate phosphatase resulting in the release of a phosphate and an alpha,alpha-trehalose.The alpha,alpha-trehalose can also be obtained from glycogen being metabolized through a glycogen debranching enzyme resulting in a the alpha, alpha-trehalose. This compound ca then be hydrated through a cytoplasmic trehalase resulting in the release of an alpha-D-glucose and a beta-d-glucose.
Alpha-D-glucose-1-phosphate can be metabolized to produce dTDP-Beta-L-rhamnose. This happens by Alpha-D-glucose-1-phosphate reacting with a dTTP and a hydrogen ion through a dTDP-glucose pyrophosphorylase resulting in the release of a pyrophosphate and a dTDP-alpha-D-glucose. This coumpound in turn reacts with a dTDP-glucose 4,6-dehydratase resulting in the release of a water molecule and a dTDP-4-dehydro-6-deoxy-alpha-D-glucopyranose. The latter compound reacts with a dTDP-4-dehydrorhamnose 3,5-epimerase resulting in the release of a dTDP-4-dehydro-beta-L-rhamnose. This compound in turn gets metabolized by a NADPH dependent dTDP-4-dehydrorhamnose reductase resulting in a release of a NADP and a dTDP-beta-L-rhamnose
Glycogen is then metabolized by reacting with a phosphate through a glycogen phosphorylase resulting in a alpha-D-glucose-1-phosphate and a dextrin. The dextrin is then hydrated through a glycogen phosphorylase-limit dextrin α-1,6-glucohydrolase resulting in the release of a debranched limit dextrin and a maltotetraose. This compound can also be incorporated into the cytoplasm through a
maltose ABC transporter. The maltotetraose interacts with a phosphate through a maltodextrin phosphorylase releasing a alpha-D-glucose-1-phosphate and a maltotriose. The maltotriose can also be incorporated through a maltose ABC transporter. The maltotriose can then interact with water through a maltodextrin glucosidase resulting in a D-glucose and a D-maltose. D-maltose can also be incorporated through a
maltose ABC transporter
The D-maltose can then interact with a maltotriose through a amylomaltase resulting in a maltotetraose and a D-glucose. The D-glucose is then phosphorylated through an ATP driven glucokinase resulting in a hydrogen ion, an ADP and a Beta-D-glucose 6-phosphate
References
Starch and Sucrose Metabolism References
Boos W, Ferenci T, Shuman HA: Formation and excretion of acetylmaltose after accumulation of maltose in Escherichia coli. J Bacteriol. 1981 May;146(2):725-32.
Pubmed: 7012137
Bouffard GG, Rudd KE, Adhya SL: Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. J Mol Biol. 1994 Dec 2;244(3):269-78. doi: 10.1006/jmbi.1994.1728.
Pubmed: 7966338
Brand B, Boos W: Maltose transacetylase of Escherichia coli. Mapping and cloning of its structural, gene, mac, and characterization of the enzyme as a dimer of identical polypeptides with a molecular weight of 20,000. J Biol Chem. 1991 Jul 25;266(21):14113-8.
Pubmed: 1856235
COHEN SS: Utilization of gluconate and glucose in growing and virus-infected Escherichia coli. Nature. 1951 Oct 27;168(4278):746-7.
Pubmed: 14882337
Hucho F, Wallenfels K: Glucono- -lactonase from Escherichia coli. Biochim Biophys Acta. 1972 Jul 13;276(1):176-9.
Pubmed: 4625870
Lee DC, Cottrill MA, Forsberg CW, Jia Z: Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase. J Biol Chem. 2003 Aug 15;278(33):31412-8. doi: 10.1074/jbc.M213154200. Epub 2003 Jun 1.
Pubmed: 12782623
Lengsfeld C, Schonert S, Dippel R, Boos W: Glucose- and glucokinase-controlled mal gene expression in Escherichia coli. J Bacteriol. 2009 Feb;191(3):701-12. doi: 10.1128/JB.00767-08. Epub 2008 Nov 21.
Pubmed: 19028900
Meyer D, Schneider-Fresenius C, Horlacher R, Peist R, Boos W: Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol. 1997 Feb;179(4):1298-306.
Pubmed: 9023215
Mulhern SA, Fishman PH, Kusiak JW, Bailey JM: Physical characteristics and chemi-osmotic transformations of mutarotases from various species. J Biol Chem. 1973 Jun 25;248(12):4163-73.
Pubmed: 4711601
Pradel E, Boquet PL: Utilization of exogenous glucose-1-phosphate as a source of carbon or phosphate by Escherichia coli K12: respective roles of acid glucose-1-phosphatase, hexose-phosphate permease, phosphoglucomutase and alkaline phosphatase. Res Microbiol. 1991 Jan;142(1):37-45.
Pubmed: 1648777
SALAS M, VINUELA E, SOLS A: SPONTANEOUS AND ENZYMATICALLY CATALYZED ANOMERIZATION OF GLUCOSE 6-PHOSPHATE AND ANOMERIC SPECIFICITY OF RELATED ENZYMES. J Biol Chem. 1965 Feb;240:561-8.
Pubmed: 14275652
Sashidhar B, Inampudi KK, Guruprasad L, Kondreddy A, Gopinath K, Podile AR: Highly conserved Asp-204 and Gly-776 are important for activity of the quinoprotein glucose dehydrogenase of Escherichia coli and for mineral phosphate solubilization. J Mol Microbiol Biotechnol. 2010;18(2):109-19. doi: 10.1159/000293819. Epub 2010 Mar 10.
Pubmed: 20215780
van Schie BJ, Hellingwerf KJ, van Dijken JP, Elferink MG, van Dijl JM, Kuenen JG, Konings WN: Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi). J Bacteriol. 1985 Aug;163(2):493-9.
Pubmed: 3926746
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings