Loading Pathway... 
Error: Pathway image not found.
Hide 
    Pathway Description
      Secondary Metabolites: Methylerythritol Phosphate and Polyisoprenoid Biosynthesis
Escherichia coli
          Metabolic Pathway
          
        
          The biosynthesis of isoprenoids starts with a D-glyceraldehyde 3-phosphate interacting with a hydrogen ion through a 1-deoxyxylulose-5-phosphate synthase resulting in a carbon dioxide and 1-Deoxy-D-xylulose. The latter compound then interacts with a hydrogen ion through a NADPH driven 1-deoxy-D-xylulose 5-phosphate reductoisomerase resulting in a NADP and a 2-C-methyl-D-erythritol 4-phosphate. The latter compound then interacts with a cytidine triphosphate and a hydrogen ion through a 4-diphosphocytidyl-2C-methyl-D-erythritol synthase resulting in a pyrophosphate and a 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol. The latter compound is then phosphorylated through an ATP driven 
4-diphosphocytidyl-2-C-methylerythritol kinase resulting in a release of an ADP, a hydrogen ion and a 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol. The latter compound then interacts with a 
2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase  resulting in the release of a 2-C-methyl-D-erythritol-2,4-cyclodiphosphate resulting in the release of a cytidine monophosphate and 2-C-methyl-D-erythritol-2,4-cyclodiphosphate. The latter compound then interacts with a reduced flavodoxin through a 
1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase  resulting in the release of a water molecule, a hydrogen ion, an oxidized flavodoxin and a 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. 
The compound 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate can interact with an NADPH,a hydrogen ion through a 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase  resulting in a NADP, a water molecule and either a Dimethylallylpyrophosphate or a Isopentenyl pyrophosphate. These two last compounds can be are isomers that can be produced through a isopentenyl diphosphate isomerase.
Dimethylallylpyrophosphate interacts with the isopentenyl pyrophosphate through a geranyl diphosphate synthase / farnesyl diphosphate synthase resulting in a pyrophosphate and a geranyl--PP. The latter compound interacts with a Isopentenyl pyrophosphate through a geranyl diphosphate synthase / farnesyl diphosphate synthase resulting in the release of a pyrophosphate and a farnesyl pyrophosphate. The latter compound interacts with isopentenyl pyrophosphate either through a undecaprenyl diphosphate synthase resulting in a release of a pyrophosphate and a di-trans,octa-cis-undecaprenyl diphosphate or through a octaprenyl diphosphate synthase resulting in a pyrophosphate and an octaprenyl diphosphate
        
      References
      
      Secondary Metabolites: Methylerythritol Phosphate and Polyisoprenoid Biosynthesis References
Charon L, Hoeffler JF, Pale-Grosdemange C, Lois LM, Campos N, Boronat A, Rohmer M: Deuterium-labelled isotopomers of 2-C-methyl-D-erythritol as tools for the elucidation of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem J. 2000 Mar 15;346 Pt 3:737-42.
                  Pubmed: 10698701
              Feurle J, Espinosa E, Eckstein S, Pont F, Kunzmann V, Fournie JJ, Herderich M, Wilhelm M: Escherichia coli produces phosphoantigens activating human gamma delta T cells. J Biol Chem. 2002 Jan 4;277(1):148-54. doi: 10.1074/jbc.M106443200. Epub 2001 Oct 23.
                  Pubmed: 11675382
              Hecht S, Eisenreich W, Adam P, Amslinger S, Kis K, Bacher A, Arigoni D, Rohdich F: Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14837-42. doi: 10.1073/pnas.201399298.
                  Pubmed: 11752431
              Kim SW, Keasling JD: Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng. 2001 Feb 20;72(4):408-15.
                  Pubmed: 11180061
              Luttgen H, Rohdich F, Herz S, Wungsintaweekul J, Hecht S, Schuhr CA, Fellermeier M, Sagner S, Zenk MH, Bacher A, Eisenreich W: Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1062-7.
                  Pubmed: 10655484
              Schwender J, Seemann M, Lichtenthaler HK, Rohmer M: Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J. 1996 May 15;316 ( Pt 1):73-80.
                  Pubmed: 8645235
              Eisenreich W, Rohdich F, Bacher A: Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 2001 Feb;6(2):78-84.
                  Pubmed: 11173292
              Eisenreich W, Bacher A, Arigoni D, Rohdich F: Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci. 2004 Jun;61(12):1401-26. doi: 10.1007/s00018-004-3381-z.
                  Pubmed: 15197467
              This pathway was propagated using PathWhiz - 
                Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
              
            Propagated from PW000958
        Highlighted elements will appear in red.
        
          
          
        
      
      Highlight Compounds
      Highlight Proteins
      Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
        
          
          
        
      
      Visualize Compound Data
      Visualize Protein Data
      Downloads
      
    Settings