Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Secondary Metabolites: Cysteine Biosynthesis from Serine
Escherichia coli
Metabolic Pathway
The pathway starts with a 3-phosphoglyceric acid interacting with an NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in an NADH, a hydrogen ion and a phosphohydroxypyruvic acid. This compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in a oxoglutaric acid and a DL-D-phosphoserine. The latter compound then interacts with a water molecule through a phosphoserine phosphatase resulting in a phosphate and an L-serine. The L-serine interacts with an acetyl-coa through a serine acetyltransferase resulting in a release of a Coenzyme A and a O-Acetylserine. The O-acetylserine then interacts with a hydrogen sulfide through a O-acetylserine sulfhydrylase A resulting in an acetic acid, a hydrogen ion and an L-cysteine
References
Secondary Metabolites: Cysteine Biosynthesis from Serine References
Smallbone K, Stanford NJ: Kinetic modeling of metabolic pathways: application to serine biosynthesis. Methods Mol Biol. 2013;985:113-21. doi: 10.1007/978-1-62703-299-5_7.
Pubmed: 23417802
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings