Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
N-Oxide Electron Transfer
Escherichia coli
Metabolic Pathway
The pathway can start in various spots. First step in this case starts with NADH interacting with a menaquinone oxidoreductase resulting in the release of a NADH and a hydrogen Ion, at the same time in the inner membrane a menaquinone interacts with 2 electrons and 2 hydrogen ions thus releasing a menaquinol. This allows for 4 hydrogen ions to be transferred from the cytosol to the periplasmic space. The menaquinol then interacts with a trimethylamine N-oxide reductase resulting in the release of 2 hydrogen ion and 2 electrons. At the same time trimethylamine N-oxide and 3 hydrogen ions interact with the enzyme trimethylamine N-oxide reductase resulting in the release of a trimethylamine and a water molecule, this reaction happening in the periplasmic space.
The second set of reactions starts with a hydrogen interacting with a menaquinone oxidoreductase resulting in the release of two electrons being released into the inner membrane which then react with with 2 hydrogen ion and a menaquinone to produce a menaquinol. This menaquinol then reacts with a trimethylamine N-oxide reductase following the same steps as mentioned before.
The third set of reactions starts with with formate interacting with a formate dehydrogenase-O resulting in a release of carbon dioxide and a hydrogen ion, this releases 2 electrons that interact with a menaquinone and two hydrogen ions. This releases a menaquinol which then reacts with a trimethylamine N-oxide reductase following the same steps as mentioned before
References
N-Oxide Electron Transfer References
Abaibou H, Pommier J, Benoit S, Giordano G, Mandrand-Berthelot MA: Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase. J Bacteriol. 1995 Dec;177(24):7141-9.
Pubmed: 8522521
Abaibou H, Giordano G, Mandrand-Berthelot MA: Suppression of Escherichia coli formate hydrogenlyase activity by trimethylamine N-oxide is due to drainage of the inducer formate. Microbiology. 1997 Aug;143 ( Pt 8):2657-64. doi: 10.1099/00221287-143-8-2657.
Pubmed: 9274019
Ansaldi M, Theraulaz L, Baraquet C, Panis G, Mejean V: Aerobic TMAO respiration in Escherichia coli. Mol Microbiol. 2007 Oct;66(2):484-94. doi: 10.1111/j.1365-2958.2007.05936.x. Epub 2007 Sep 10.
Pubmed: 17850256
Barrett EL, Kwan HS: Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol. 1985;39:131-49. doi: 10.1146/annurev.mi.39.100185.001023.
Pubmed: 3904597
Berg BL, Stewart V: Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12. Genetics. 1990 Aug;125(4):691-702.
Pubmed: 2168848
Cox JC, Madigan MT, Favinger JL, Gest H: Redox mechanisms in "oxidant-dependent" hexose fermentation by Rhodopseudomonas capsulata. Arch Biochem Biophys. 1980 Oct 1;204(1):10-7.
Pubmed: 7000002
Gon S, Patte JC, Mejean V, Iobbi-Nivol C: The torYZ (yecK bisZ) operon encodes a third respiratory trimethylamine N-oxide reductase in Escherichia coli. J Bacteriol. 2000 Oct;182(20):5779-86.
Pubmed: 11004177
Jormakka M, Tornroth S, Byrne B, Iwata S: Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science. 2002 Mar 8;295(5561):1863-8. doi: 10.1126/science.1068186.
Pubmed: 11884747
McCrindle SL, Kappler U, McEwan AG: Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Microb Physiol. 2005;50:147-98. doi: 10.1016/S0065-2911(05)50004-3.
Pubmed: 16221580
Shimokawa O, Ishimoto M: Purification and some properties of inducible tertiary amine N-oxide reductase from Escherichia coli. J Biochem. 1979 Dec;86(6):1709-17.
Pubmed: 393699
Takagi M, Tsuchiya T, Ishimoto M: Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli. J Bacteriol. 1981 Dec;148(3):762-8.
Pubmed: 7031034
Wang H, Gunsalus RP: Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP. J Bacteriol. 2003 Sep;185(17):5076-85.
Pubmed: 12923080
Wissenbach U, Kroger A, Unden G: The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch Microbiol. 1990;154(1):60-6.
Pubmed: 2204318
Wissenbach U, Ternes D, Unden G: An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch Microbiol. 1992;158(1):68-73.
Pubmed: 1444716
Jones RW: The role of the membrane-bound hydrogenase in the energy-conserving oxidation of molecular hydrogen by Escherichia coli. Biochem J. 1980 May 15;188(2):345-50.
Pubmed: 6249272
Laurinavichene TV, Tsygankov AA: H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. FEMS Microbiol Lett. 2001 Aug 7;202(1):121-4.
Pubmed: 11506918
Sawers RG, Ballantine SP, Boxer DH: Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol. 1985 Dec;164(3):1324-31.
Pubmed: 3905769
Simon J, van Spanning RJ, Richardson DJ: The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim Biophys Acta. 2008 Dec;1777(12):1480-90. doi: 10.1016/j.bbabio.2008.09.008. Epub 2008 Sep 30.
Pubmed: 18930017
Unden G, Bongaerts J: Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta. 1997 Jul 4;1320(3):217-34.
Pubmed: 9230919
Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, Fontecilla-Camps JC: Crystal structure of the O(2)-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b. Structure. 2013 Jan 8;21(1):184-190. doi: 10.1016/j.str.2012.11.010. Epub 2012 Dec 20.
Pubmed: 23260654
Wulff P, Day CC, Sargent F, Armstrong FA: How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases. Proc Natl Acad Sci U S A. 2014 May 6;111(18):6606-11. doi: 10.1073/pnas.1322393111. Epub 2014 Apr 8.
Pubmed: 24715724
Yamamoto I, Ishimoto M: Hydrogen-dependent growth of Escherichia coli in anaerobic respiration and the presence of hydrogenases with different functions. J Biochem. 1978 Sep;84(3):673-9.
Pubmed: 363703
Bogachev AV, Murtazina RA, Skulachev VP: H+/e- stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol. 1996 Nov;178(21):6233-7.
Pubmed: 8892824
Wikstrom M, Hummer G: Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4431-6. doi: 10.1073/pnas.1120949109. Epub 2012 Mar 5.
Pubmed: 22392981
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings