Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Uracil Degradation III
Escherichia coli
Metabolic Pathway
Uracil is a pyrimidine nucleobase found in RNA, and can be used as a source of nitrogen for E. coli. There are at least three pathways through which uracil is degraded. This one begins with uracil, which originates from purine degradation. The putative monooxygenase enzyme rutA catalyzes the breakdown of uracil into peroxyaminoacrylate, using FMNH2 as a cofactor. Peroxyaminoacrylate is then broken down into both carbamic acid and 3-aminoacrylate following the addition of a water molecule by the putative isochorismatase family protein rutB. Carbamic acid can then spontaneously, with the addition of a hydrogen ion, split into an ammonium ion and a molecule of carbon dioxide. 3-aminoacrylate, on the other hand, is catalyzed by the UPF0076 protein rutC to form 2-aminoacrylic acid. This compound enters into a reaction catalyzed by protein rutD, which adds a water molecule and hydrogen ion and forms malonic semialdehyde with ammonium being a byproduct. Finally, the putative NADH dehydrogenase/NAD(P)H nitroreductase rutE complex converts malonic semialdehyde into hydroxypropionic acid, which is then used to form other necessary chemicals. The ammonium ions produced will be the important source of nitrogen for the bacteria.
References
Uracil Degradation III References
CAMPBELL LL Jr: Reductive degradation of pyrimidines. I. The isolation and characterization of a uracil fermenting bacterium, Clostridium uracilicum nov. spec. J Bacteriol. 1957 Feb;73(2):220-4.
Pubmed: 13416173
Evans WR, Axelrod B: Pyrimidine metabolism in germinating seedlings. Plant Physiol. 1961 Jan;36(1):9-13. doi: 10.1104/pp.36.1.9.
Pubmed: 16655478
FRITZSON P: The catabolism of C14-labeled uracil, dihydrouracil, and beta-ureidopropionic acid in rat liver slices. J Biol Chem. 1957 May;226(1):223-8.
Pubmed: 13428755
Kim KS, Pelton JG, Inwood WB, Andersen U, Kustu S, Wemmer DE: The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J Bacteriol. 2010 Aug;192(16):4089-102. doi: 10.1128/JB.00201-10. Epub 2010 Apr 16.
Pubmed: 20400551
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings