Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Citrate Lyase Activation
Escherichia coli
Metabolic Pathway
The citrate lyase activation starts with a 3-dephospho-CoA reacting with ATP and a hydrogen ion through a triphosphoribosyl-dephospho-CoA synthase resulting in a adenine and a 2'-(5'-triphospho-alpha-D-ribosyl)-3'-dephospho-CoA. The latter compound in turn reacts with with a citrate lyase acyl-carrier protein through a apo-citrate lyase phosphoribosyl-dephospho-CoA transferase resulting in the release of a pyrophosphate and a hydrogen ion and a holo citrate lyase acyl-carrier protein.This protein complex can either react with a hydrogen ion and a acetate resulting in the release of a water and an acetyl-holo citrate lyase acyl-carrier protein.
The holo acyl-carrier protein creacts with an ATP and an acetate through a citrate lyase synthase resulting in the release of an AMP, a pyrophosphate and an acetyl-holo citrate lyase acyl-ccarrier protein.
The holo citrate lyase acyl-carrier protein can also interact with an S-acetyl phosphopantethiene resulting in the release of a 4-phosphopantethiene and an acetyl-holo citrate lyase acyl-carrier protein.
References
Citrate Lyase Activation References
Schneider K, Dimroth P, Bott M: Identification of triphosphoribosyl-dephospho-CoA as precursor of the citrate lyase prosthetic group. FEBS Lett. 2000 Oct 20;483(2-3):165-8.
Pubmed: 11042274
Schneider K, Dimroth P, Bott M: Biosynthesis of the prosthetic group of citrate lyase. Biochemistry. 2000 Aug 8;39(31):9438-50.
Pubmed: 10924139
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings