Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Purine Deoxyribonucleosides Degradation
Escherichia coli
Metabolic Pathway
The purine deoxyribonucleosides degradation starts with deoxyadenosine reacting with a water molecule and a hydrogen in through a deoxyadenosune deaminase resulting in the release of ammonium and a deoxyinosine. Deoxyinosine reacts in a reversible manner with phosphate through a deoxyinosine phosphorylase resulting in the release of a hypoxanthine and a 2-deoxy-alpha-D-ribose-1-phosphate.
Deoxyadenosine reacts with a phosphate through a deoxyadenosine phosphorylase resulting in the release of adenine and a 2-deoxy-alpha-D-ribose-1-phosphate. This compound in turn reacts with guanine through a deoxyguanosine phosphorylase resulting in the release of a phosphate and a deoxyguanosine.
Deoxy-alpha-D-ribose 1-phosphate reacts with a deoxyribose 1,5-phosphomutase resulting in the release of a 2-deoxy-D-ribose 5 phosphate. This compound in turn reacts with deoxyribose-phosphate aldolase resulting in the release of an acetaldehyde and a a D-glyceraldehyde 3-phosphate.
References
Purine Deoxyribonucleosides Degradation References
Stoychev G, Kierdaszuk B, Shugar D: Xanthosine and xanthine. Substrate properties with purine nucleoside phosphorylases, and relevance to other enzyme systems. Eur J Biochem. 2002 Aug;269(16):4048-57.
Pubmed: 12180982
Acebron SP, Martin I, del Castillo U, Moro F, Muga A: DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett. 2009 Sep 17;583(18):2991-6. doi: 10.1016/j.febslet.2009.08.020. Epub 2009 Aug 19.
Pubmed: 19698713
Ahmad SI, Pritchard RH: A map of four genes specifying enzymes involved in catabolism of nucleosides and deoxynucleosides in Escherichia coli. Mol Gen Genet. 1969 Aug 15;104(4):351-9.
Pubmed: 4904508
Aristarkhov A, Mikulskis A, Belasco JG, Lin EC: Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli. J Bacteriol. 1996 Jul;178(14):4327-32.
Pubmed: 8763968
Burlingame R, Chapman PJ: Stereospecificity in meta-fission catabolic pathways. J Bacteriol. 1983 Jul;155(1):424-6.
Pubmed: 6345511
Chen YM, Lin EC: Regulation of the adhE gene, which encodes ethanol dehydrogenase in Escherichia coli. J Bacteriol. 1991 Dec;173(24):8009-13.
Pubmed: 1744060
Clark DP, Cronan JE Jr: Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J Bacteriol. 1980 Oct;144(1):179-84.
Pubmed: 6998946
Clark DP: The fermentation pathways of Escherichia coli. FEMS Microbiol Rev. 1989 Sep;5(3):223-34.
Pubmed: 2698228
Dailly YP, Bunch P, Clark DP: Comparison of the fermentative alcohol dehydrogenases of Salmonella typhimurium and Escherichia coli. Microbios. 2000;103(406):179-96.
Pubmed: 11131810
Dale B, Greenberg GR: Genetic mapping of a mutation in Escherichia coli showing reduced activity of thymidine phosphorylase. J Bacteriol. 1967 Sep;94(3):778-9.
Pubmed: 5340684
Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R: Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature. 2011 Aug 10;476(7360):355-9. doi: 10.1038/nature10333.
Pubmed: 21832992
DeSantis G, Liu J, Clark DP, Heine A, Wilson IA, Wong CH: Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorg Med Chem. 2003 Jan 2;11(1):43-52.
Pubmed: 12467706
Diaz-Mejia JJ, Babu M, Emili A: Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev. 2009 Jan;33(1):66-97. doi: 10.1111/j.1574-6976.2008.00141.x. Epub 2008 Nov 27.
Pubmed: 19054114
Echave P, Tamarit J, Cabiscol E, Ros J: Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli. J Biol Chem. 2003 Aug 8;278(32):30193-8. doi: 10.1074/jbc.M304351200. Epub 2003 Jun 3.
Pubmed: 12783863
Ferrandez A, Garcia JL, Diaz E: Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12. J Bacteriol. 1997 Apr;179(8):2573-81.
Pubmed: 9098055
Fischer B, Boutserin S, Mazon H, Collin S, Branlant G, Gruez A, Talfournier F: Catalytic properties of a bacterial acylating acetaldehyde dehydrogenase: evidence for several active oligomeric states and coenzyme A activation upon binding. Chem Biol Interact. 2013 Feb 25;202(1-3):70-7. doi: 10.1016/j.cbi.2012.11.006. Epub 2012 Dec 10.
Pubmed: 23237860
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings