Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Methylglyoxal Degradation III
Escherichia coli
Metabolic Pathway
Methylglyoxal, also known as pyruvaldehyde, is a cytotoxic compound derived from pyruvic acid. In E. coli, there are at least eight pathways that are responsible for the detoxification of methylglyoxal. The first reaction in this pathway is the reversible reduction of pyruvaldehyde to hydroxyacetone, along with the cofactor NADPH, catalyzed by an uncharacterized protein encoded by the yghZ gene, now known to be L-glyceraldehyde 3-phosphate reductase. Following this, hydroxyacetone is oxidized into (S)-propane-1,2-diol by the glycerol dehydrogenase enzyme, using NAD as a cofactor. Finally, (S)-propane-1,2-diol is transported into the periplasmic space.
References
Methylglyoxal Degradation III References
Grant AW, Steel G, Waugh H, Ellis EM: A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiol Lett. 2003 Jan 21;218(1):93-9.
Pubmed: 12583903
Hinshelwood A, McGarvie G, Ellis E: Characterisation of a novel mouse liver aldo-keto reductase AKR7A5. FEBS Lett. 2002 Jul 17;523(1-3):213-8. doi: 10.1016/s0014-5793(02)02982-4.
Pubmed: 12123834
Hinshelwood A, McGarvie G, Ellis EM: Substrate specificity of mouse aldo-keto reductase AKR7A5. Chem Biol Interact. 2003 Feb 1;143-144:263-9. doi: 10.1016/s0009-2797(02)00173-4.
Pubmed: 12604212
Kalapos MP: Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett. 1999 Nov 22;110(3):145-75. doi: 10.1016/s0378-4274(99)00160-5.
Pubmed: 10597025
Kelley JJ, Dekker EE: Identity of Escherichia coli D-1-amino-2-propanol:NAD+ oxidoreductase with E. coli glycerol dehydrogenase but not with Neisseria gonorrhoeae 1,2-propanediol:NAD+ oxidoreductase. J Bacteriol. 1985 Apr;162(1):170-5.
Pubmed: 3920199
Ko J, Kim I, Yoo S, Min B, Kim K, Park C: Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases. J Bacteriol. 2005 Aug;187(16):5782-9. doi: 10.1128/JB.187.16.5782-5789.2005.
Pubmed: 16077126
Misra K, Banerjee AB, Ray S, Ray M: Reduction of methylglyoxal in Escherichia coli K12 by an aldehyde reductase and alcohol dehydrogenase. Mol Cell Biochem. 1996 Mar 23;156(2):117-24. doi: 10.1007/bf00426333.
Pubmed: 9095467
O'connor T, Ireland LS, Harrison DJ, Hayes JD: Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochem J. 1999 Oct 15;343 Pt 2:487-504.
Pubmed: 10510318
Tang JC, Forage RG, Lin EC: Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae. J Bacteriol. 1982 Dec;152(3):1169-74.
Pubmed: 6183251
Vander Jagt DL, Robinson B, Taylor KK, Hunsaker LA: Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem. 1992 Mar 5;267(7):4364-9.
Pubmed: 1537826
Wermuth B, Munch JD, von Wartburg JP: Purification and properties of NADPH-dependent aldehyde reductase from human liver. J Biol Chem. 1977 Jun 10;252(11):3821-8.
Pubmed: 16919
Xu D, Liu X, Guo C, Zhao J: Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp. PCC 7002. Microbiology. 2006 Jul;152(Pt 7):2013-21. doi: 10.1099/mic.0.28870-0.
Pubmed: 16804176
Zhu Y, Lin EC: L-1,2-propanediol exits more rapidly than L-lactaldehyde from Escherichia coli. J Bacteriol. 1989 Feb;171(2):862-7. doi: 10.1128/jb.171.2.862-867.1989.
Pubmed: 2644239
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings