Loading Pathway... 
Error: Pathway image not found.
Hide 
    Pathway Description
      L-Threonine Degradation to Methylglyoxal
Escherichia coli
          Metabolic Pathway
          
        
          L-threonine is degrade into methylglyoxal (pyruvaldehyde) by first reacting with a NDA dependent threonine dehydrogenase resulting in the release of a hydrogen ion, an NADH and a 2-amino-3-oxobutanoate. The latter compound reacts spontaneously with a hydrogen ion resulting in the release of a carbon dioxide and a aminoacetone. The aminoacetone in turn reacts with an oxygen and a water molecule through an aminoacetone oxidase resulting in the release of a hydrogen peroxide, ammonium and a methylglyoxal which can then be incorporated in the methylglyoxal degradation pathways.
        
      References
      
      L-Threonine Degradation to Methylglyoxal References
Boylan SA, Dekker EE: Growth, enzyme levels, and some metabolic properties of an Escherichia coli mutant grown on L-threonine as the sole carbon source. J Bacteriol. 1983 Oct;156(1):273-80.
                  Pubmed: 6413491
              Dutra F, Knudsen FS, Curi D, Bechara EJ: Aerobic oxidation of aminoacetone, a threonine catabolite: iron catalysis and coupled iron release from ferritin. Chem Res Toxicol. 2001 Sep;14(9):1323-9.
                  Pubmed: 11559049
              ELLIOTT WH: Aminoacetone formation by Staphylococcus aureus. Biochem J. 1960 Mar;74:478-85.
                  Pubmed: 13820014
              Faulkner A, Turner JM: Microbial metabolism of amino alcohols. Aminoacetone metabolism via 1-aminopropan-2-ol in Pseudomonas sp. N.C.I.B. 8858. Biochem J. 1974 Feb;138(2):263-76.
                  Pubmed: 4362743
              Green ML, Lewis JB: The oxidation of aminoacetone by a species of Arthrobacter. Biochem J. 1968 Jan;106(1):267-70.
                  Pubmed: 5721463
              Higgins IJ, Turner JM, Willetts AJ: Enzyme mechanism of aminoacetone metabolism by micro-organisms. Nature. 1967 Aug 19;215(5103):887-8.
                  Pubmed: 4292865
              Kelley JJ, Dekker EE: Identity of Escherichia coli D-1-amino-2-propanol:NAD+ oxidoreductase with E. coli glycerol dehydrogenase but not with Neisseria gonorrhoeae 1,2-propanediol:NAD+ oxidoreductase. J Bacteriol. 1985 Apr;162(1):170-5.
                  Pubmed: 3920199
              Kim YM, Ogawa W, Tamai E, Kuroda T, Mizushima T, Tsuchiya T: Purification, reconstitution, and characterization of Na(+)/serine symporter, SstT, of Escherichia coli. J Biochem. 2002 Jul;132(1):71-6.
                  Pubmed: 12097162
              Kim I, Kim E, Yoo S, Shin D, Min B, Song J, Park C: Ribose utilization with an excess of mutarotase causes cell death due to accumulation of methylglyoxal. J Bacteriol. 2004 Nov;186(21):7229-35. doi: 10.1128/JB.186.21.7229-7235.2004.
                  Pubmed: 15489434
              Komatsubara S, Murata K, Kisumi M, Chibata I: Threonine degradation by Serratia marcescens. J Bacteriol. 1978 Aug;135(2):318-23.
                  Pubmed: 355220
              Lyles GA: Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int J Biochem Cell Biol. 1996 Mar;28(3):259-74.
                  Pubmed: 8920635
              Potter R, Kapoor V, Newman EB: Role of threonine dehydrogenase in Escherichia coli threonine degradation. J Bacteriol. 1977 Nov;132(2):385-91.
                  Pubmed: 334738
              Rahhal DA, Turner JM, Willetts AJ: The role of aminoacetone in L-threonine metabolism by Bacillus subtilis. Biochem J. 1967 Jun;103(3):73P.
                  Pubmed: 4292837
              Ray S, Ray M: Formation of methylglyoxal from aminoacetone by amine oxidase from goat plasma. J Biol Chem. 1983 Mar 25;258(6):3461-2.
                  Pubmed: 6833209
              Reitzer L: Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol. 2003;57:155-76. doi: 10.1146/annurev.micro.57.030502.090820. Epub 2003 May 1.
                  Pubmed: 12730324
              Robbins JC, Oxender DL: Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J Bacteriol. 1973 Oct;116(1):12-8.
                  Pubmed: 4583203
              Sumantran VN, Schweizer HP, Datta P: A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli. J Bacteriol. 1990 Aug;172(8):4288-94.
                  Pubmed: 2115866
              UMBARGER HE, BROWN B: Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol. 1957 Jan;73(1):105-12.
                  Pubmed: 13405870
              Willetts AJ, Turner JM: Threonine metabolism in a strain of Bacillus subtilis. Biochem J. 1970 Apr;117(2):27P-28P.
                  Pubmed: 4986871
              Willetts AJ, Turner JM: Threonine metabolism in a strain of Bacillus subtilis enzymic oxidation of 1-aminopropan-2-ol and aminoacetone. Biochim Biophys Acta. 1971 Oct;252(1):98-104.
                  Pubmed: 4334917
              Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
              This pathway was propagated using PathWhiz - 
                Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
              
            Propagated from PW002106
        Highlighted elements will appear in red.
        
          
          
        
      
      Highlight Compounds
      Highlight Proteins
      Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
        
          
          
        
      
      Visualize Compound Data
      Visualize Protein Data
      Downloads
      
    Settings