Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Threonine Metabolism
Saccharomyces cerevisiae
Metabolic Pathway
The biosynthesis of threonine starts with L-aspartic acid being phosphorylated by an ATP-driven aspartate kinase resulting in a release of an ADP and an L-aspartyl-4-phosphate. This compound interacts with a hydrogen ion through an NADPH-driven aspartate semialdehyde dehydrogenase resulting in the release of a phosphate, an NADP, and an L-aspartate-semialdehyde. The latter compound interacts with a hydrogen ion through an NADPH-driven aspartate kinase / homoserine dehydrogenase resulting in the release of an NADP and an L-homoserine. L-Homoserine is phosphorylated through an ATP driven homoserine kinase resulting in the release of an ADP, a hydrogen ion, and an O-phosphohomoserine. The latter compound then interacts with a water molecule threonine synthase resulting in the release of a phosphate and an L-threonine. L-threonine is degraded into glycine and acetaldehyde by reacting with a threonine aldolase. Acetaldehyde can then be integrated into the mitochondria or stay in the cytosol. It is then degraded into acetyl-CoA through an aldehyde dehydrogenase.
References
Threonine Metabolism References
Monschau N, Stahmann KP, Sahm H, McNeil JB, Bognar AL: Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis. FEMS Microbiol Lett. 1997 May 1;150(1):55-60.
Pubmed: 9163906
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings