Loading Pathway... 
Error: Pathway image not found.
Hide 
    Pathway Description
      Phosphatidylcholine Biosynthesis PC(15:1(11Z)/18:1(11Z))
Saccharomyces cerevisiae
          Metabolic Pathway
          
        
          Phosphatidyl ethanolamine reacts with S-adenosylmethionine through a phosphatdylethanolamine N-methyltransferase resulting in the release of hydrogen ion and S-adenosylhomocysteine an a PE-NMe. The PE-NMe reacts with S'-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resulting in the release of hydrogen ion, s-adenosylhomocysteine and PE-NMe2. The PE-NMe2 reacts with s-adenosylmethionine through a phosphotidyl-N-methylethanolamine N-methyltransferase resuilting in the release of hydrogen ion, s-adenosylhomocysteine and PC
        
      References
      
      Phosphatidylcholine Biosynthesis PC(15:1(11Z)/18:1(11Z)) References
Aktas M, Wessel M, Hacker S, Klusener S, Gleichenhagen J, Narberhaus F: Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol. 2010 Dec;89(12):888-94. doi: 10.1016/j.ejcb.2010.06.013. Epub 2010 Jul 24.
                  Pubmed: 20656373
              Bolognese CP, McGraw P: The isolation and characterization in yeast of a gene for Arabidopsis S-adenosylmethionine:phospho-ethanolamine N-methyltransferase. Plant Physiol. 2000 Dec;124(4):1800-13. doi: 10.1104/pp.124.4.1800.
                  Pubmed: 11115895
              Boumann HA, de Kroon AI: The contributions of biosynthesis and acyl chain remodelling to the molecular species profile of phosphatidylcholine in yeast. Biochem Soc Trans. 2005 Nov;33(Pt 5):1146-9. doi: 10.1042/BST20051146.
                  Pubmed: 16246068
              This pathway was generated using PathWhiz - 
                Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
              
              Generated from PW002720
        Highlighted elements will appear in red.
        
          
          
        
      
      Highlight Compounds
      Highlight Proteins
      Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
        
          
          
        
      
      Visualize Compound Data
      Visualize Protein Data
      Downloads
      
    Settings