Loader

Pathways

PathWhiz ID Pathway Meta Data

PW000259

Pw000259 View Pathway
drug action

Bromfenac Action Pathway

Homo sapiens
Bromfenac (also named Prolensa, Bromday or Xibrom) is a nonsteroidal anti-inflammatory drug (NSAID). It can be used to reduce ocular inflammation and pain after cataract surgery. Bromfenac is also a type of ophthalmic anti-inflammatory medicines. Bromfenac can block prostaglandin synthesis by the action of inhibition of prostaglandin G/H synthase 1 and 2. Prostaglandin G/H synthase 1 and 2 catalyze the arachidonic acid to prostaglandin G2, and also catalyze prostaglandin G2 to prostaglandin H2 in the metabolism pathway. Decreased prostaglandin synthesis in many animal model's cell is caused by presence of bromfenac.

PW145061

Pw145061 View Pathway
drug action

Bromfenac Drug Metabolism Action Pathway

Homo sapiens

PW127971

Pw127971 View Pathway
drug action

Bromfenac NSAID Action Pathway

Homo sapiens
Bromfenac is a nonsteroidal anti-inflammatory drug (NSAID) for ophthalmic use. Non-ophthalmic formulations of bromfenac were withdrawn in the US in 1998 due to cases of severe liver toxicity. The mechanism of its action is due to the ability of bromfenac to block prostaglandin synthesis by inhibiting cyclooxygenase 1 and 2 with selectivity for COX-2 over COX-1. Prostaglandins are mediators of certain kinds of intraocular inflammation. In studies performed in animal eyes, prostaglandins have been shown to produce disruption of the blood-aqueous humor barrier, vasodilation, increased vascular permeability, leukocytosis, and increased intraocular pressure.

PW145923

Pw145923 View Pathway
drug action

Bromhexine Drug Metabolism Action Pathway

Homo sapiens

PW176520

Pw176520 View Pathway
metabolic

Bromhexine Predicted Metabolism Pathway

Homo sapiens
Metabolites of Bromhexine are predicted with biotransformer.

PW145287

Pw145287 View Pathway
drug action

Bromocriptine Drug Metabolism Action Pathway

Homo sapiens

PW128278

Pw128278 View Pathway
drug action

Bromocriptine Mechanism of Action Action Pathway

Homo sapiens
Bromocriptine is an ergot alkaloid derivative in the dopamine D2 agonist class of drugs. Prolactin release-inhibiting hormone (PRIH) is the catecholamine neurotransmitter dopamine. Bromocriptine is an FDA-approved medication indicated for the use of disorders causing hyperprolactinemia, which most often is due to the most common of the pituitary adenomas – prolactinoma. Bromocriptine is a dopamine receptor agonist with selective agonist activity on D2 dopamine receptors while simultaneously acting as a partial antagonist for D1 dopamine receptors. Dopamine agonism has variable effects depending on the target tissue. In Parkinson disease, bromocriptine binds directly to striatal dopamine D2 receptors, stimulating locomotion and attenuating the bradykinetic symptoms caused by the degeneration of dopaminergic nigrostriatal neurons. This same D2 agonistic effect on the D2 receptors of anterior pituitary lactotrophic cells blocks prolactin exocytosis and gene expression, reducing the harmful effects of hyperprolactinemia in the case of a pituitary prolactinoma. In acromegaly, bromocriptine’s dopaminergic effect can cause paradoxical blocking of GH release through tuberoinfundibular pathways, decreasing circulating blood concentrations of GH. he dopamine D2 receptor is a 7-transmembrane G-protein coupled receptor associated with Gi proteins. In lactotrophs, stimulation of dopamine D2 receptor causes inhibition of adenylyl cyclase, which decreases intracellular cAMP concentrations and blocks IP3-dependent release of Ca2+ from intracellular stores. Decreases in intracellular calcium levels may also be brought about via inhibition of calcium influx through voltage-gated calcium channels, rather than via inhibition of adenylyl cyclase. Additionally, receptor activation blocks phosphorylation of p42/p44 MAPK and decreases MAPK/ERK kinase phosphorylation. Inhibition of MAPK appears to be mediated by c-Raf and B-Raf-dependent inhibition of MAPK/ERK kinase. Dopamine-stimulated growth hormone release from the pituitary gland is mediated by a decrease in intracellular calcium influx through voltage-gated calcium channels rather than via adenylyl cyclase inhibition. Stimulation of dopamine D2 receptors in the nigrostriatal pathway leads to improvements in coordinated muscle activity in those with movement disorders.

PW145323

Pw145323 View Pathway
drug action

Bromodiphenhydramine Drug Metabolism Action Pathway

Homo sapiens

PW147090

Pw147090 View Pathway
drug action

Bromodiphenhydramine H1 Antihistamine Neurological Sleep Action Pathway

Homo sapiens
Bromodiphenhydramine is an ethanolamine class H1 antihistamine used to treat insomnia and allergy symptoms such as hay fever and hives. It is also used with pyridoxine in the treatment of nausea and vomiting in pregnancy. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Wakefulness is regulated by histamine in the tuberomammillary nucleus, a part of the hypothalamus. Histidine is decarboxylated into histamine in the neuron. Histamine is transported into synaptic vesicles by a monoamine transporter then released into the synapse. Normally histamine would activate the H1 histamine receptor on the post-synaptic neuron in the tuberomammillary nucleus. Bromodiphenhydramine inhibits the H1 histamine receptor, preventing the depolarization of the post-synaptic neuron. This prevents the wakefulness signal from being sent to the major areas of the brain, causing sleepiness.

PW176609

Pw176609 View Pathway
drug action

Bromodiphenhydramine H1 Antihistamine Smooth Muscle Relaxation Action Pathway

Homo sapiens
Bromodiphenhydramine is an ethanolamine H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Bromodiphenhydramine also inhibits the H1 histamine receptor on bronchiole smooth muscle myocytes. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin.Calcium bound calmodulin is required for the activation of myosin light chain kinase. This prevents the phosphorylation of myosin light chain 3, causing an accumulation of myosin light chain 3. This causes muscle relaxation, opening up the bronchioles in the lungs, making breathing easier.