Loader

Pathways

PathWhiz ID Pathway Meta Data

PW000061

Pw000061 View Pathway
disease

2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency

Homo sapiens
2-Methyl-3-hydroxybutyryl CoA dehydrogenase deficiency (Hydroxyl-CoA dehydrogenase deficiency; MHBD) is a rare inborn disease of metabolism caused by a mutation in the HSD17B10 gene which codes for 3-hydroxyacyl-CoA dehydrogenase type-2. A deficiency in this enzyme results in accumulation of L-lactic acid in blood, spinal fluid, and urine; 2-ethylhydracrylic acid, 2-methyl-3-hydroxybutyric acid, and tiglylglycine in urine. Symptoms include cerebal atrophy, motor and mental retardation, overactivity and behavior issues, seizures and progressive neurological defects leading to early death. Treatment includes a high carbohydrate and low protein diet.

PW000062

Pw000062 View Pathway
disease

Propionic Acidemia

Homo sapiens
Propionic acidemia (Ketotic hyperglycinemia) is caused by mutation in the genes encoding propionyl-CoA carboxylase, PCCA or PCCB. The break down of Propionyl-CoA is catalyzed by Propionyl-CoA carboxylase (PCC). Propionyl-CoA plays an important role in amino acid metabolism. A mutation in this enzyme causes accumulation of ammonia and propionylcarnitine (C3) in the blood; carnitine , glutamine, glycine, and propionic acid in the plasma; 3-hydroxypropionic acid, 3-hydroxyvaleric acid, 5-oxoproline, acylcarnitin, glycine, methylcitric acid, propionylglycine and tiglylcine in the urine. Symptoms include cardio myopathy, growth retardation, hypothermia, ketosis, neutropenia, strokelike episodes, pyloric stenosis and spastic diplegia/quadriplegia.

PW000063

Pw000063 View Pathway
disease

3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency

Homo sapiens
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-Hydroxy-3-methylglutaric acidemia; Leucine metabolism, defect in, HMG-CoA lyase deficiency) is an autosomal recessive disease caused by a mutation in the HMGCL gene which codes for hydroxymethylglutaryl-CoA lyase. A deficiency in this enzyme results in accumulation of 3-hydroxymethylglutaric acid, 3-hydroxyisovaleric acid, 3-methylcrotonylglycine and 3-methylglutaconic acid (cis and trans form), and methylglutaric acid in urine; and ammonia in blood. Symptoms include cardiomyopathy, dehydration, hypotonia, lactic acidosis, and pancreatitis. Treatment includes a low-fat, low-protein, high-carbohydrate diet.

PW000064

Pw000064 View Pathway
disease

Maple Syrup Urine Disease

Homo sapiens
Maple syrup urine disease, also called BCKD deficiency, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder caused by a defective BCKDHA, BKCDHB or DBT gene. These genes code for a protein which is vital in the breakdown of amino acids, specifically the amino acids leucine, isoleucine and valine. This disorder is characterized by a large accumulation of these amino acids in the body. Symptoms of the disorder include a distinct maple syrup smell of the urine, vomiting, lethargy, abnormal movements and delayed development. Treatment includes long-term dietary management which aims to restrict the consumption of branched-chain amino acids. It is estimated that maple syrup urine disorder affects 1 in 185,000 infants globally. This number increases significantly when looking specifically at Old World Order Mennonites, where the prevalence is 1 in 380 infants.

PW000065

Pw000065 View Pathway
disease

3-Methylcrotonyl-CoA Carboxylase Deficiency Type I

Homo sapiens
3-Methylcrotonyl-Coenzyme A Carboxylase Deficiency Type I also called 3-MCC Deficiency is a rare inborn error of metabolism (IEM) and is the result of defective pair of genes. More specifically defects in genes MCCC1 and MCCC2 cause 3-MCC Deficiency. 3-MCC has a very important role in protein metabolism in the body. In particular, the said enzyme is pivotal in one of the many steps which constitute the breakdown of leucine. Mutations in the aforementioned genes leads to a reduction in the activity of 3-MCC. As would naturally be expected, this causes the body to be unable to uptake and breakdown leucine properly. Consequently, this leads to the build up of toxic byproducts which are not processed as the breakdown of leucine is left incomplete. If these toxic byproducts manifest themselves in sufficiently high levels they can be very harmful, damaging the brain and nervous system. Symptoms include recurring episodes of vomiting and diarrhea, lethargy, hypotonia, seizures, and coma.

PW000066

Pw000066 View Pathway
disease

3-Methylglutaconic Aciduria Type I

Homo sapiens
3-Methylglutaconic aciduria type 1 (3-Methylglutaconicaciduria; Aciduria, 3-methylglutaconic type I) is an autosomal recessive disease caused by a mutation in the AUH gene which codes for methylglutaconyl-CoA hydratase. A deficiency in this enzyme results in accumulation of 3-hydroxyisovaleric acid, 3-methylglutaconic acid, and methylglutaric acid in urine. Symptoms include hypoglycemia, low birth weight, coma, seizures, and mental retardation. Treatment includes a low protein diet.

PW000067

Pw000067 View Pathway
disease

3-Methylglutaconic Aciduria Type III

Homo sapiens
3-Methylglutaconic aciduria type 3 (Costeff syndrome; Optic atrophy plus syndrome) is an autosomal recessive disease caused by a deficiency in the OPA3 code which does for optic atrophy 3 protein. A deficiency of this enzyme results in accumulation of 3-methylglutaconic acid and methylglutaric acid. Symptoms include ataxia, dysarthria, optic atrophy, and neurological deterioration.

PW000068

Pw000068 View Pathway
disease

Methylmalonate Semialdehyde Dehydrogenase Deficiency

Homo sapiens
Methylmalonate Semialdehyde Dehydrogenase Deficiency (MMSDH Deficiency; Aldehyde Dehydrogenase 6 Family, Member A1; ALDH6A1 Deficiency)is caused by a defect in methylmalonate semialdehyde dehydrogenase, which catalyzes the irreversible oxidative decarboxylation of malonate and methylmalonate semialdehydes to acetyl- and propionyl-CoA, respectively. A defect in methylmalonate semialdehyde dehydrogenase causes accumulation of 3-Aminoisobutyric acid, 3-Hydroxyisobutyric acid, 3-hydroxypropionic acid, beta-Alanine, lactate, and methylmalonic acid in urine. Symptoms inclue failure to thrive, large liver, mental and motor retardation and vomiting.

PW000069

Pw000069 View Pathway
disease

Methylmalonic Aciduria

Homo sapiens
Methylmalonic acidemia cause defects (Methylmalonaciduria due to methylmalonic CoA mutase; Acidemia, methylmalonic; MMA) in the metabolic pathway where methylmalonyl-coenzyme A (CoA) is converted into succinyl-CoA by the enzyme methylmalonyl-CoA mutase. Defects in the enzyme Methylmalonyl-CoA mutase causes accumulation of ammonia in blood; methylmalonic acid in plasma; creatinine and uric acid in serum; 3-Aminoisobutyric acid, 3-Hydroxypropionic acid, 3-Hydroxyvaleric acid, glycine, methylcitric acid and methylmalonic acid in urine; and methylmalonic acid in spinal fluid. Symptoms include anemia, dehydration, growth retardation, nephrosis, respiratory distress and metabolic acidosis.

PW000070

Pw000070 View Pathway
disease

4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency

Homo sapiens
4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency (SSADH; Gamma-hydroxybutyric acidemia) inhibits the formation of succinate from GABA. This deficiency results in urinary excretion of 4-hydroxybutyric acid. In vivo proton MR also indicates elevated GABA levels as compared with an age-matched control. Symptoms include ataxia, chorea or athetosis, motor retardation, seizures, macrocephaly and delayed or abnormal speech development.