Loader

Pathways

PathWhiz ID Pathway Meta Data

PW004535

Pw004535 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/28:1(11Z))

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.

PW004534

Pw004534 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/28:0)

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.

PW004533

Pw004533 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/26:1(9Z))

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.

PW004532

Pw004532 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/26:1(11Z))

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.

PW004531

Pw004531 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/26:0)

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.

PW004530

Pw004530 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/24:1(9Z))

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.

PW004529

Pw004529 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/24:1(11Z))

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.

PW004528

Pw004528 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/24:0)

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.

PW004527

Pw004527 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/22:1(9Z))

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.

PW004526

Pw004526 View Pathway
metabolic

Cardiolipin Biosynthesis CL(10:0/14:1(9Z)/14:1(9Z)/22:1(11Z))

Saccharomyces cerevisiae
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.