Loader

Pathways

PathWhiz ID Pathway Meta Data

PW127153

Pw127153 View Pathway
disease

Alkaptonuria

Homo sapiens
Alkaptonuria (Homogentisic acid oxidase deficiency) is an autosomal recessive disease caused by a mutation in the HGD gene which codes for homogentisate 1,2-dioxygenase. A mutation in this enzyme results in accumulation of homogentisic acid in urine. Symptoms, which present in adulthood, include arthritis, vulvular heart disease, black or brown urine, black and brown eyes, ears, and skin, and urolithiasis. Treatment includes a low-protein diet with vitamin C.

PW145925

Pw145925 View Pathway
drug action

Aliskiren Drug Metabolism Action Pathway

Homo sapiens

PW126854

Pw126854 View Pathway
drug action

Alirocumab Action Pathway (New)

Homo sapiens
Alirocumab is a PCSK9 inhibitor used as an adjunct to manage heterozygous familial hypercholesterolemia or clinical atherosclerotic cardiovascular disease in patients who require additional lowering of LDL-cholesterol (LDL-C). Alirocumab is an antibody eliciting proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor activity that is indicated for: (i) use in reducing the risk of myocardial infarction, stroke, and unstable angina requiring hospitalization in adults with established cardiovascular disease 4, and/or (ii) use as an adjunct to diet or use alone or in combination with other lipid-lowering therapies (statins, ezetimibe, for example) for the treatment of adults with primary hyperlipidemia (including heterozygous familial hypercholesterolemia) to reduce low-density lipoprotein cholesterol (LDL-C) levels in the body. PCSK9 is secreted by the liver and typically binds to the LDL receptors in serum and marks them for lysosomal degradation. In result, the LDL receptors are not able to recycle to the plasma membrane, reducing their binding to LDL-C and therefore reducing the clearance of LDL-C from plasma. Therefore by inhibiting PCSK9's actions, alirocumab allows for more LDL-C reuptake by the liver and facilitates a higher rate of clearance. Lower LDL cholesterol concentrations are associated with a reduced risk of coronary heart disease.

PW176776

Pw176776 View Pathway
drug action

Alimemazine H1-Antihistamine Immune Response Action Pathway

Homo sapiens
Alimemazine is an antihistamine agent used to prevent and relieve allergic conditions which cause pruritus and other allergic skin conditions, including urticaria. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.

PW176684

Pw176684 View Pathway
drug action

Alimemazine H1-Antihistamine Blood Vessel Constriction Action Pathway

Homo sapiens
Alimemazine is an antihistamine agent used to prevent and relieve allergic conditions which cause pruritus and other allergic skin conditions, including urticaria. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Clemastine inhibits the H1 histamine receptor on blood vessel endothelial cells. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin. Calcium bound calmodulin is required for the activation of the calmodulin-binding domain of nitric oxide synthase. The inhibition of nitric oxide synthesis prevents the activation of myosin light chain phosphatase. This causes an accumulation of myosin light chain-phosphate which causes the muscle to contract and the blood vessel to constrict, decreasing the swelling and fluid leakage from the blood vessels caused by allergens.

PW060631

Pw060631 View Pathway
drug action

Alimemazine H1-Antihistamine Action

Homo sapiens
Alimemazine (trimeprazine) is a first-generation phenothiazine H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.

PW176591

Pw176591 View Pathway
drug action

Alimemazine H1 Antihistamine Smooth Muscle Relaxation Action Pathway

Homo sapiens
Alimemazine is an antihistamine agent used to prevent and relieve allergic conditions which cause pruritus and other allergic skin conditions, including urticaria. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Alimemazine also inhibits the H1 histamine receptor on bronchiole smooth muscle myocytes. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin.Calcium bound calmodulin is required for the activation of myosin light chain kinase. This prevents the phosphorylation of myosin light chain 3, causing an accumulation of myosin light chain 3. This causes muscle relaxation, opening up the bronchioles in the lungs, making breathing easier.

PW145332

Pw145332 View Pathway
drug action

Alimemazine Drug Metabolism Action Pathway

Homo sapiens

PW146656

Pw146656 View Pathway
drug action

Alginic acid Drug Metabolism Action Pathway

Homo sapiens

PW144472

Pw144472 View Pathway
drug action

Alfuzosin Drug Metabolism Action Pathway

Homo sapiens