Loader

Pathways

PathWhiz ID Pathway Meta Data

PW000051

Pw000051 View Pathway
metabolic

Valine, Leucine, and Isoleucine Degradation

Homo sapiens
Valine, isoleuciine, and leucine are essential amino acids and are identified as the branched-chain amino acids (BCAAs). The catabolism of all three amino acids starts in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with α-ketoglutarate as the amine acceptor. As a result, three different α-keto acids are produced and are oxidized using a common branched-chain α-keto acid dehydrogenase (BCKD), yielding the three different CoA derivatives. Isovaleryl-CoA is produced from leucine by these two reactions, alpha-methylbutyryl-CoA from isoleucine, and isobutyryl-CoA from valine. These acyl-CoA’s undergo dehydrogenation, catalyzed by three different but related enzymes, and the breakdown pathways then diverge. Leucine is ultimately converted into acetyl-CoA and acetoacetate; isoleucine into acetyl-CoA and succinyl-CoA; and valine into propionyl-CoA (and subsequently succinyl-CoA). Under fasting conditions, substantial amounts of all three amino acids are generated by protein breakdown. In muscle, the final products of leucine, isoleucine, and valine catabolism can be fully oxidized via the citric acid cycle; in the liver, they can be directed toward the synthesis of ketone bodies (acetoacetate and acetyl-CoA) and glucose (succinyl-CoA). Because isoleucine catabolism terminates with the production of acetyl-CoA and propionyl-CoA, it is both glucogenic and ketogenic. Because leucine gives rise to acetyl-CoA and acetoacetyl-CoA, it is classified as strictly ketogenic.

PW000052

Pw000052 View Pathway
metabolic

Purine Metabolism

Homo sapiens
Purine is a water soluble, organic compound. Purines, including purines that have been substituted, are the most widely distributed kind of nitrogen-containing heterocycle in nature. The two most important purines are adenine and guanine. Other notable examples are hypoxanthine, xanthine, theobromine, caffeine, uric acid and isoguanine. This pathway depicts a number of processes including purine nucleotide biosynthesis, purine degradation and purine salvage. The main organ where purine nucleotides are created is the liver. This process starts as 5-phospho-α-ribosyl-1-pyrophosphate, or PRPP, and creates inosine 5’-monophosphate, or IMP. Following a series of reactions, PRPP uses compounds such as tetrahydrofolate derivatives, glycine and ATP, and IMP is produced as a result. Glutamine PRPP amidotransferase catalyzes PRPP into 5-phosphoribosylamine, or PRA. 5-phosphoribosylamine is converted to glycinamide ribotide (GAR) then to formyglycinamide ribotide (FGAR). This set of reactions is catalyzed by a trifunctional enzyme containing GAR synthetase, GAR transformylase and AIR synthetase. FGAR is converted to formylglycinamidine-ribonucleotide (FGAM) by formylglycinamide synthase. FGAM is then converted by aminoimidzaole ribotide synthase to 5-aminoimidazole ribotide (AIR) then carboxylated by aminoimidazole ribotide carboxylase to carboxyaminoimidazole ribotide (CAIR). CAIR is then converted tosuccinylaminoimidazole carboxamide ribotide (SAICAR) by succinylaminoimidazole carboxamide ribotide synthase followed by conversion to AICAR (via adenylsuccinate lyase) then to FAICAR (via aminoimidazole carboxamide ribotide transformylase). FAICAR is finally converted to inosine monophosphate (IMP) by IMP cyclohydrolase. Because of the complexity of this synthetic process, the purine ring is actually composed of atoms derived from many different molecules. The N1 atom arises from the amine group of Asp, the C2 and C8 atoms originate from formate, the N3 and N9 atoms come from the amide group of Gln, the C4, C5 and N7 atoms come from Gly and the C6 atom comes from CO2. IMP creates a fork in the road for the creation of purine, as it can either become GMP or AMP. AMP is generated from IMP via adenylsuccinate synthetase (which adds aspartate) and adenylsuccinate lyase. GMP is generated via the action of IMP dehydrogenase and GMP synthase. Purine nucleotides being catabolized creates uric acid. Beginning from AMP, the enzymes AMP deaminase and nucleotidase work in concert to generate inosine. Alternately, AMP may be dephosphorylate by nucleotidase and then adenosine deaminase (ADA) converts the free adenosine to inosine. The enzyme purine nucleotide phosphorylase (PNP) converts inosine to hypoxanthine, while xanthine oxidase converts hypoxanthine to xanthine and finally to uric acid. GMP and XMP can also be converted to uric acid via the action of nucleotidase, PNP, guanine deaminase and xanthine oxidase. Nucleotide creation stemming from the purine bases and purine nucleosides happens in steps that are called the “salvage pathways”. The free purine bases phosphoribosylated and reconverted to their respective nucleotides.

PW000053

Pw000053 View Pathway
metabolic

Vitamin B6 Metabolism

Homo sapiens
As is commonly known there are many vitamins, the vitamin B complex group being one of the most well known. An important vitamin B complex group vitamin is vitamin B6, which is water-soluble. Moreover, this vitamin comes in various forms, one of which is an active form, known by the name pyridoxal phosphate or PLP. PLP serves as cofactor in a variety of reactions including from amino acid metabolism, (in particular in reactions such as transamination, deamination, and decarboxylation). To complicate matters however, there are in fact seven alternate forms of this same vitamin. These include pyridoxine (PN), pyridoxine 5’-phosphate (PNP), pyridoxal (PL), pyridoxamine (PM), pyridoxamine 5’-phosphate (PMP), 4-pyridoxic acid (PA), and the aforementioned pyridoxal 5’-phosphate (PLP). One of these forms, PA, is in fact a catabolite whose presence is found in excreted urine. For a person to absorb some of these active forms of vitamin B6 such as PLP or PMP they must first be dephosphorylized. This done via an alkaline enzyme phosphatase. There are a wide variety of biproducts from the metabolism in question, most of which find there ways into the urine and from there are excreted. One such biproduct is 4-pyridoxic acid. In fact this last biproduct is found in such large quantities that estimates of vitamin B6 metabolism birproducts show that 4-pyridoxic acid is as much as 40-60% of all the biproducts.Of course, it is not the only product of metabolism. Others include,include pyridoxal, pyridoxamine, and pyridoxine.

PW000054

Pw000054 View Pathway
metabolic

Pyruvate Metabolism

Homo sapiens
Pyruvate is an intermediate compound in the metabolism of fats, proteins, and carbohydrates. It can be formed from glucose via glycolysis or the transamination of alanine. It can be converted into Acetyl-CoA to be used as the primary energy source for the TCA cycle, or converted into oxaloacetate to replenish TCA cycle intermediates. Pyruvate can also be used to synthesize carbohydrates, fatty acids, ketone bodies, alanine, and steroids. In conditions of inssuficient oxygen or in cells with few mitochondria, pyruvate is reduced to lactate in order to re-oxidize NADH back into NAD+ Pyruvate participates in several key reactions and pathways. In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase in an highly exergonic and irreversible reaction. In gluconeogenesis, pyruvate carboxylase and PEP carboxykinase are needed to catalyze the conversion of pyruvate to PEP. In fatty acid synthesis, the pyruvate dehydrogenase complex decarboxylates pyruvate to produce acetyl-CoA. In gluconeogenesis, the carboxylation by pyruvate carboxylase produces oxaloacetate. The fate of pyruvate depends on the cell energy charge. In cells or tissues with a high energy charge pyruvate is directed toward gluconeogenesis, but when the energy charge is low pyruvate is preferentially oxidized to CO2 and H2O in the TCA cycle, with generation of 15 equivalents of ATP per pyruvate. The enzymatic activities of the TCA cycle are located in the mitochondrion. When transported into the mitochondrion, pyruvate encounters two principal metabolizing enzymes: pyruvate carboxylase (a gluconeogenic enzyme) and pyruvate dehydrogenase (PDH). With a high cell-energy charge, acetyl-CoA, is able allosterically to activate pyruvate carboxylase, directing pyruvate toward gluconeogenesis. When the energy charge is low CoA is not acylated, pyruvate carboxylase is inactive, and pyruvate is preferentially metabolized via the PDH complex and the enzymes of the TCA cycle to CO2 and H2O.

PW000055

Pw000055 View Pathway
metabolic

Pentose Phosphate Pathway

Homo sapiens
The pentose phosphate pathway—also referred to in the literature as the phosphogluconate pathway, the hexose monophosphate shunt, or the pentose phosphate shunt—is involved in the generation of NADPH as well as pentose sugars. Of the total cytoplasmic NADPH used in biosynthetic reactions, a significant proportion of it is generated through the pentose phosphate pathway. Ribose 5-phosphate is also another essential product generated by this pathway which is employed in nucleotide synthesis. The pentose phosphate pathway is also involved in the digestive process as the products of nucleic acid catabolism can be metabolized through the pathway (pentose sugars are usually yielded in the breakdown) while the carbon backbones of dietary carbohydrates can be converted into glycolytic/gluconeogenic intermediates. The pentose phosphate pathway is interconnected to the glycolysis pathway through the shared use of three intermediates: glucose 6-phosphate, glyceraldehyde 3-phosphate, and fructose 6-phosphate. The pathway can be described as eight distinct reactions (see below) and is separated into an oxidative phase and a non-oxidative phase. Reactions 1-3 form the oxidative phase and generate NADPH and pentose 5-phosphate. Reactions 4-8 form the non-oxidative phase and converts pentose 5-phosphate into other pentose sugars such as ribose 5-phosphate, but generates no NADPH. The eight reactions are as follows: reaction 1 where glucose-6-phosphate 1-dehydrogenase converts glucose 6-phosphate into D-glucono-1,5-lactone 6-phosphate with NADPH formation; reaction 2 where 6-phosphogluconolactonase converts D-glucono-1,5-lactone 6-phosphate into 6-phospho-D-gluconate;reaction 3 where 6-phosophogluconate dehydrogenase converts 6-phospho-D-gluconate into ribulose 5-phosphate with NADPH formation; reaction 4 where ribulose-phosphate 3-epimerase converts ribulose 5-phosphate into xylulose 5-phosphate; reaction 5 where ribose-5-phosphate isomerase converts ribulose 5-phosphate into ribose 5-phosphate; reaction 6 where transketolase rearranges ribose 5-phosphate and xylulose 5-phosphate to form sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate; reaction 7 where transaldolase rearranges of sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate to form erythrose 4-phosphate and fructose 6-phosphate; and reaction 8 where transkelotase rearranges of xylulose 5-phosphate and erythrose 4-phosphate to form glyceraldehyde 3-phosphate and fructose-6-phosphate.

PW000056

Pw000056 View Pathway
metabolic

Methionine Metabolism

Homo sapiens
Methionine metabolism is a process that is necessary for humans. Methionine metabolism in mammals happens within two pathways, a methionine cycle and a transsulfuration sequence. These pathways have three common reactions with both pathways including the transformation of methionine to S-adenosylmethionine (SAM), the use of SAM in many different transmethylation reactions resulting in a methylated product plus S-adenosylhomocysteine, and the conversion of S-adenosylhomocysteine to produce the compounds homocysteine and adenosine. The reactions mentioned above not only produce cysteine, they also create a-ketobutyrate. This compound is then converted to succinyl-CoA through a three step process after being converted to propionyl-CoA. If the amino acids cysteine and methionine are available in enough quantity, the pathway will accumulate SAM and this will in turn encourage the production of cysteine and a-ketobutyrate, which are both glucogenic, through cystathionine synthase. When there is a lack of methionine, there is a decrease in the production of SAM, which limits cystathionine synthase activity.

PW000057

Pw000057 View Pathway
disease

Primary Hyperoxaluria Type I

Homo sapiens
Type I primary hyperoxaluria (Glycolicaciduria) is caused by mutation in the gene encoding alanine-glyoxylate aminotransferase (AGXT). AGXT normally catalyzes the reaction from L-serine and pyruvate to 3-hydroxypyruvate and L-alanine and the reaction from L-alanine and glyoxylate to pyruvate and glycine. A defect in AGXT results in accumulation of glycolic acid, glyoxylic acid, and oxalate in urine. Symptoms include hematuria, myocarditis, nephrocalcinosis, peripheral neuropathy, and renal failure.

PW000058

Pw000058 View Pathway
disease

Pyruvate Carboxylase Deficiency

Homo sapiens
Pyruvate carboxylase deficiency is caused by mutation in the pyruvate carboxylase gene. Serine—pyruvate aminotransferase catalyzes the reaction of serine and pyruvate to produce 3-hydroxypyruvate and L-alanine, as well as the reaction from L-alanine and glyodxylate to pyruvate and glycine. A defect in this results in accumulation of ammonia, glucose and pyruvate in blood; proline, lysine, citrulline, and alanine in plasma; and 2-oxoglutaric acid, fumaric acid, ketone bodies and succinate in urine. Symptoms include ataxia, lactic acidosis, mental retardation, metabolic acidosis, siezures, and dyspnea.

PW000059

Pw000059 View Pathway
disease

17-beta Hydroxysteroid Dehydrogenase III Deficiency

Homo sapiens
17-beta hydroxysteroid dehydrogenase III deficiency, also known as 17-KSR deficiency or male pseudohermaphroditism with gynecomastia (MPH), is as rare inborn error of metabolism (IEM) and autosomal recessive disorder of the androgen and estrogen metabolism pathway. It is caused by a mutation in the HSD17B3 gene, which encodes the enzyme testosterone 17-beta-dehydrogenase 3, which is responsible for catalyzing the reversible formation of androstenedione from testosterone. This leads to an accumulation of androstenedione and dehydroepiandrosterone in the body, as well as a lack of testosterone produced. 17-KSR deficiency is characterized by an absence of testosterone in the testis until puberty, where testosterone is produced outside of the gonads. Symptoms include infertility and external female genitalia until puberty, when secondary male sex characteristics occur, as well as gynecomastia. Due to this, many individuals with this disorder are raised as female despite being genetically male, until puberty. Treatment can include removal of testes before puberty, preventing any masculinization at puberty, as well as surgical treatment of genitalia. However, there is no known treatment for restoring the fertility of affected individuals. It is estimated that 17-KSR deficiency affects 1 in 150,000 individuals in The Netherlands, without much information for the rest of the world.

PW000060

Pw000060 View Pathway
disease

beta-Ketothiolase Deficiency

Homo sapiens
beta-Ketothiolase Deficiency (2-Methyl-3-Hydroxybutyric Acidemia; Mitochondrial Acetoacetyl-CoA Thiolase Deficiency; MAT Deficiency; T2 Deficiency; 3-KTD Deficiency; 3-Ketothiolase Deficiency) is an autosomal recessive disease caused by a mutation in the HADHB gene which codes for beta-ketathiolase. A deficiency in this enzyme results in accumulation of ammonia and ketone bodies in blood; and 2-methyl-3-hydroxybutyric acid, 2-methylacetoacetic acid, 3-hydroxybutyric acid, tiglylglycine, and ketone bodies in urine. Symptoms include ketosis, seizures, organic acids in urine, and hyperammonemia. Treatment includes a low protein diet and L-carnitine.h3. h2.