Loader

Pathways

PathWhiz ID Pathway Meta Data

PW501088

Pw501088 View Pathway
metabolic

Polymyxin Resistance

Cedecea davisae DSM 4568
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW501482

Pw501482 View Pathway
metabolic

Polymyxin Resistance

Plesiomonas shigelloides 302-73
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW497895

Pw497895 View Pathway
metabolic

Polymyxin Resistance

Escherichia coli W
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW499473

Pw499473 View Pathway
metabolic

Polymyxin Resistance

Barnesiella intestinihominis YIT 11860
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW500681

Pw500681 View Pathway
metabolic

Polymyxin Resistance

Sutterella parvirubra YIT 11816
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW686162

Pw686162 View Pathway
metabolic

Polymyxin Resistance

Neisseria subflava NJ9703
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate. The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A

PW147044

Pw147044 View Pathway
metabolic

Polymyxin B Sulfate Drug Metabolism Pathway

Homo sapiens

PW122263

Pw122263 View Pathway
metabolic

Polyketide type II Biosynthesis

Bacteria
Polyketides are a large family of natural products found in bacteria, fungi and plants, and include many clinically important drugs such as tetracycline, daunorubicin, erythromycin, rapamycin and lovastatin. They are biosynthesized from acyl CoA precursors by polyketide synthases (PKSs).

PW124456

Pw124456 View Pathway
metabolic

polyhydroxyalkanoates synthesis

Bacteria

PW125886

Pw125886 View Pathway
metabolic

Polyhydroxyalkanoates

Bacteria
This metabolic pathway contains the 3 important pathways