PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW145566View Pathway |
drug action
Quinestrol Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 16:05 Last Updated: October 07, 2023 at 16:05 |
PW124374View Pathway |
drug action
Quinethazone Action PathwayHomo sapiens
Quinethazone is an oral thiazide-like diuretic drug that acts in the kidney, specifically in the distal convoluted tubule of the nephron. It is used in the treatment of hypertension. In the distal convoluted tubule (DCT), the regulation of ions such as sodium, potassium, calcium, chloride, and magnesium occurs. In epithelial cells of the DCT, the basolateral membrane consists of the Na+/K+ ATPase, which pumps Na+ into the interstitium-blood area and K+ into the epithelial cell; the Na+/Ca2+ exchanger, which pumps Na+ into the cell and Ca2+ into the interstitium-blood; and the chloride transporter which transports chloride into the interstitium-blood. The apical membrane contains a calcium channel that transports calcium from the lumen into the epithelial cell, a potassium channel that transports K+ out of the epithelial cell, and a Na+/Cl- cotransporter which transports Na+ and Cl- into the epithelial cell. Quinethazone targets this Na+/Cl- cotransporter. Quinethazone is transported from the blood into the epithelial cells. In the cell, it has access to the Na+/Cl- transporter and inhibits it preventing Na+ and Cl- reabsorption. The inhibition of Na+ reabsorption results in a low cytosolic concentration of Na+ and increases the solute concentration of the lumen. This decreases the lumen-epithelial cell concentration gradient and as a result, less water would be reabsorbed from the urine. This effect is valued in conditions such as hypertension because it allows more water to be excreted in the urine rather than be absorbed in the blood which increases blood volume. Since less Na+ is available for the Na+/K+ ATPase function, K+ accumulates in the cell and the ATP-sensitive inward rectifier potassium channel(IKATP) transports this excess K+ into the lumen, thus increasing K+ excretion. Side effects such as nausea, dizziness, hypokalemia, and dry mouth can occur from taking Quinethazone. This drug is administered as an oral tablet.
|
Creator: Karxena Harford Created On: December 01, 2020 at 21:58 Last Updated: December 01, 2020 at 21:58 |
PW000330View Pathway |
drug action
Quinethazone Action Pathway (old)Homo sapiens
Quinethazone, also known under the brand-name Hydromox, is a pharmacologically-active small molecule that belongs to a class of drugs called thiazides. Thiazides and thiazide-like drugs are diuretics commonly employed to control hypertension. The short term mechanism of action is relatively well-understood: thiazides inhibit sodium-chloride co-transport into the renal distal convoluted tubule of the nephron and therefore increase fluid loss which decreases extracellular fluid (ECF), plasma volume, and ultimately blood pressure. In the case of quinethazone, it inhibits the sodium-chloride symporter, solute carrier family 12 member 3. Thiazides also inhibit sodium ion transport. However, the long-term mechanism of action isn’t as well-characterized and it is thought that other processes beyond regulating plasma and ECF volumes are involved as these two volumes return to baseline within 4-6 weeks of first use of thiazides.
|
Creator: WishartLab Created On: August 22, 2013 at 10:45 Last Updated: August 22, 2013 at 10:45 |
PW145373View Pathway |
drug action
Quinethazone Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 15:41 Last Updated: October 07, 2023 at 15:41 |
PW000376View Pathway |
drug action
Quinidine Action PathwayHomo sapiens
This pathway illustrates the quinidine targets involved in antiarrhythmic therapy. Contractile activity of cardiac myocytes is elicited via action potentials mediated by a number of ion channel proteins. During rest, or diastole, cells maintain a negative membrane potential; i.e. the inside the cell is negatively charged relative to the cells’ extracellular environment. Membrane ion pumps, such as the sodium-potassium ATPase and sodium-calcium exchanger (NCX), maintain low intracellular sodium (5 mM) and calcium (100 nM) concentrations and high intracellular potassium (140 mM) concentrations. Conversely, extracellular concentrations of sodium (140 mM) and calcium (1.8 mM) are relatively high and extracellular potassium concentrations are low (5 mM). At rest, the cardiac cell membrane is impermeable to sodium and calcium ions, but is permeable to potassium ions via inward rectifier potassium channels (I-K1), which allow an outward flow of potassium ions down their concentration gradient. The positive outflow of potassium ions aids in maintaining the negative intracellular electric potential. When cells reach a critical threshold potential, voltage-gated sodium channels (I-Na) open and the rapid influx of positive sodium ions into the cell occurs as the ions travel down their electrochemical gradient. This is known as the rapid depolarization or upstroke phase of the cardiac action potential. Sodium channels then close and rapidly activated potassium channels such as the voltage-gated transient outward delayed rectifying potassium channel (I-Kto) and the voltage-gated ultra rapid delayed rectifying potassium channel (I-Kur) open. These events make up the early repolarization phase during which potassium ions flow out of the cell and sodium ions are continually pumped out. During the next phase, known as the plateau phase, calcium L-type channels (I-CaL) open and the resulting influx of calcium ions roughly balances the outward flow of potassium channels. During the final repolarization phase, the voltage-gated rapid (I-Kr) and slow (I-Ks) delayed rectifying potassium channels open increasing the outflow of potassium ions and repolarizing the cell. The extra sodium and calcium ions that entered the cell during the action potential are extruded via sodium-potassium ATPases and NCX and intra- and extracellular ion concentrations are restored. In specialized pacemaker cells, gradual depolarization to threshold occurs via funny channels (I-f).
Quinidine, a diastereomer of quinine, is a Class 1A antiarrhythmic drug that is isolated from the bark of the Cinchona plant or other related species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. At low concentrations, it blocks the voltage-gated sodium (I-Na) and rapid delayed rectifying potassium (I-Kr) channels. I-Na is responsible for the rapid upstroke in cell membrane potential observed on the cardiac myocyte action potential. I-Kr is partially responsible for the final repolarization phase of the action potential. By blocking I-Na, quinidine increases the threshold of excitability and decreases automaticity. I-Kr block results in action potential prolongation. At higher concentrations, quinidine also blocks voltage-gated delayed rectifying potassium channel (I-Ks), inward rectifier potassium channel (I-K1), voltage-gated transient outward delayed rectifying potassium channel (I-Kto), and L-type calcium channels (I-CaL). Quinidine also exerts antimuscarinic effects, which increase AV nodal conduction and antagonize alpha-adrenergic effects. Quinidine may be used to maintain sinus rhythm in atrial fibrillation or flutter and prevent recurrence of ventricular fibrillation or tachycardia. The side effects of quinidine include diarrhea and on rare occasions (2-8%) Torsades de Pointes.
|
Creator: WishartLab Created On: August 22, 2013 at 10:45 Last Updated: August 22, 2013 at 10:45 |
PW127871View Pathway |
drug action
Quinidine Action Pathway (New)Homo sapiens
Quinidine is a medication used to restore normal sinus rhythm, treat atrial fibrillation and flutter, and treat ventricular arrhythmias. It can be found under the brand name Nuedexta. Quinidine is a D-isomer of quinine present in the bark of the Cinchona tree and similar plant species. This alkaloid was first described in 1848 and has a long history as an antiarrhythmic medication. Quinidine is considered the first antiarrhythmic drug (class Ia) and is moderately efficacious in the acute conversion of atrial fibrillation to normal sinus rhythm. It prolongs cellular action potential by blocking sodium and potassium currents. A phenomenon known as “quinidine syncope” was first described in the 1950s, characterized by syncopal attacks and ventricular fibrillation in patients treated with this drug. Quinidine has a complex electrophysiological profile that has not been fully elucidated. The antiarrhythmic actions of this drug are mediated through effects on sodium channels in Purkinje fibers. Quinidine blocks the rapid sodium channel (INa), decreasing the phase zero of rapid depolarization of the action potential. Quinidine also reduces repolarizing K+ currents (IKr, IKs), the inward rectifier potassium current (IK1), and the transient outward potassium current Ito, as well as the L-type calcium current ICa and the late INa inward current. The type 5 subunit alpha channel is targeted. The reduction of these currents leads to the prolongation of the action potential duration. By shortening the plateau but prolonging late depolarization, quinidine facilitates the formation of early afterdepolarisation (EAD). Some side effects of using quinidine may include nausea, heartburn, fever, and dizziness. Quinidine is administered as an oral tablet.
|
Creator: Hayley Created On: June 13, 2023 at 10:19 Last Updated: June 13, 2023 at 10:19 |
PW128438View Pathway |
drug action
Quinidine barbiturate Action PathwayHomo sapiens
The administration of quinidine derivatives is utilized to monitor various skin and mucosal reactions. In certain cases, a papulopurpuric eruption can arise in patients (without thrombocytopenia) who are intermittently taking quinidine phenylethyl barbiturate and upon its reintroduction. Barbiturates exert their effects by binding to the GABAA receptor, targeting either the alpha or beta subunit. These binding sites are distinct from both GABA itself and the benzodiazepine binding site. Similar to benzodiazepines, barbiturates enhance the impact of GABA at this receptor. This interaction with the GABAA receptor results in decreased input resistance, suppression of burst and tonic firing, particularly in ventrobasal and intralaminar neurons. Concurrently, it increases burst duration and the average conductance at individual chloride channels. Consequently, this enhances the amplitude and duration of inhibitory postsynaptic currents. Beyond their GABAergic action, barbiturates also inhibit the AMPA receptor, a subtype of glutamate receptor. Notably, glutamate serves as the primary excitatory neurotransmitter in the mammalian central nervous system.
|
Creator: Dorsa Yahya Rayat Created On: August 28, 2023 at 20:54 Last Updated: August 28, 2023 at 20:54 |
PW132341View Pathway |
Quinidine barbiturate Drug MetabolismHomo sapiens
Quinidine barbiturate is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Quinidine barbiturate passes through the liver and is then excreted from the body mainly through the kidney.
|
Creator: Ray Kruger Created On: September 21, 2023 at 21:01 Last Updated: September 21, 2023 at 21:01 |
PW145389View Pathway |
drug action
Quinidine barbiturate Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 15:43 Last Updated: October 07, 2023 at 15:43 |
PW124052View Pathway |
drug action
Quinidine Drug Action (New)Homo sapiens
|
Creator: Nitya Khetarpal Created On: August 08, 2020 at 23:01 Last Updated: August 08, 2020 at 23:01 |