Loader

Pathways

PathWhiz ID Pathway Meta Data

PW144894

Pw144894 View Pathway
drug action

Acyclovir Drug Metabolism Action Pathway

Homo sapiens

PW126596

Pw126596 View Pathway
drug action

Acyclovir Action Pathway (New)

Homo sapiens
Acyclovir is a guanosine analog used to treat herpes simplex, varicella zoster, herpes zoster, herpes labialis, and acute herpetic keratitis. Acyclovir is becomes acyclovir monophosphate due to the action of viral thymidine kinase.5 Acyclovir monophosphate is converted to the diphosphate form by guanylate kinase.1 Acyclovir diphosphate is converted to acyclovir triphosphate by nucleoside diphosphate kinase, pyruvate kinase, creatine kinase, phosphoglycerate kinase, succinyl-CoA synthetase, phosphoenolpyruvate carboxykinase and adenylosuccinate synthetase. Acyclovir triphosphate inhibits the activity of DNA polymerase by competing with its substrate dGTP. Acyclovir triphosphate also gets incorporated into viral DNA, but since it lacks the 3'-OH group which is needed to form the 5′ to 3′ phosphodiester linkage essential for DNA chain elongation, this causes DNA chain termination, preventing the growth of viral DNA. Less Viral DNA is transported into the nucleus, therefore, less viral DNA is integrated into the host DNA. Less viral proteins produced, fewer viruses can form.

PW000174

Pw000174 View Pathway
disease

Acute Intermittent Porphyria

Homo sapiens
Acute intermittent porphyria (AIP), also called Swedish porphyria, is a rare inborn error of metabolism (IEM) and autosomal dominant disorder of heme biosynthesis caused by a defective HMBS gene. The HMBS gene codes for the protein hydroxymethylbilane synthase (porphobilinogen deaminase) which catalyzes the synthesis of porphobilinogen into hydroxymethylbilane. This disorder is characterized by a large accumulation of 5-aminolevulinic acid or porphobilinogen in both urine and serum. Most patients are asymptomatic between attacks. Symptoms of the disorder include abdominal pain, constipation, vomiting, hypertension, muscle weakness, seizures, delirium, coma, and depression. Treatment involves undertaking a high-carbohydrate diet and, during severe attacks, a glucose 10% infusion. It is estimated that AIP affects 5.9 per 1 000 000 people.

PW121924

Pw121924 View Pathway
disease

Acute Intermittent Porphyria

Rattus norvegicus
Acute intermittent porphyria (AIP), also called Swedish porphyria, is a rare inborn error of metabolism (IEM) and autosomal dominant disorder of heme biosynthesis caused by a defective HMBS gene. The HMBS gene codes for the protein hydroxymethylbilane synthase (porphobilinogen deaminase) which catalyzes the synthesis of porphobilinogen into hydroxymethylbilane. This disorder is characterized by a large accumulation of 5-aminolevulinic acid or porphobilinogen in both urine and serum. Most patients are asymptomatic between attacks. Symptoms of the disorder include abdominal pain, constipation, vomiting, hypertension, muscle weakness, seizures, delirium, coma, and depression. Treatment involves undertaking a high-carbohydrate diet and, during severe attacks, a glucose 10% infusion. It is estimated that AIP affects 5.9 per 1 000 000 people.

PW127208

Pw127208 View Pathway
disease

Acute Intermittent Porphyria

Homo sapiens
Acute intermittent porphyria (AIP), also called Swedish porphyria, is a rare inborn error of metabolism (IEM) and autosomal dominant disorder of heme biosynthesis caused by a defective HMBS gene. The HMBS gene codes for the protein hydroxymethylbilane synthase (porphobilinogen deaminase) which catalyzes the synthesis of porphobilinogen into hydroxymethylbilane. This disorder is characterized by a large accumulation of 5-aminolevulinic acid or porphobilinogen in both urine and serum. Most patients are asymptomatic between attacks. Symptoms of the disorder include abdominal pain, constipation, vomiting, hypertension, muscle weakness, seizures, delirium, coma, and depression. Treatment involves undertaking a high-carbohydrate diet and, during severe attacks, a glucose 10% infusion. It is estimated that AIP affects 5.9 per 1 000 000 people.

PW121698

Pw121698 View Pathway
disease

Acute Intermittent Porphyria

Mus musculus
Acute intermittent porphyria (AIP), also called Swedish porphyria, is a rare inborn error of metabolism (IEM) and autosomal dominant disorder of heme biosynthesis caused by a defective HMBS gene. The HMBS gene codes for the protein hydroxymethylbilane synthase (porphobilinogen deaminase) which catalyzes the synthesis of porphobilinogen into hydroxymethylbilane. This disorder is characterized by a large accumulation of 5-aminolevulinic acid or porphobilinogen in both urine and serum. Most patients are asymptomatic between attacks. Symptoms of the disorder include abdominal pain, constipation, vomiting, hypertension, muscle weakness, seizures, delirium, coma, and depression. Treatment involves undertaking a high-carbohydrate diet and, during severe attacks, a glucose 10% infusion. It is estimated that AIP affects 5.9 per 1 000 000 people.

PW109032

Pw109032 View Pathway
signaling

Activation of PKC Through G Protein-Coupled Receptor

Mus musculus
G protein-coupled receptors sense stimuli outside the cell and transmit signals across the plasma membrane. Activation of protein kinase C (PKC) is one of the common signaling pathways. When a class of GPCRs are activated by a ligand, they activate Gq protein to bind GTP instead of GDP. After the Gq becomes active, it activates phospholipase C (PLC) to cleave the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacyl glycerol (DAG). IP3 can bind Ins3P receptor to open calcium channel by diffusion from cytoplasm to ER. Activated calcium channel will release the calcium from ER into cytoplasm. Calcium can activate the kinase activity of PKC.

PW000726

Pw000726 View Pathway
signaling

Activation of PKC Through G Protein-Coupled Receptor

Homo sapiens
G protein-coupled receptors sense stimuli outside the cell and transmit signals across the plasma membrane. Activation of protein kinase C (PKC) is one of the common signaling pathways. When a class of GPCRs are activated by a ligand, they activate Gq protein to bind GTP instead of GDP. After the Gq becomes active, it activates phospholipase C (PLC) to cleave the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacyl glycerol (DAG). IP3 can bind Ins3P receptor to open calcium channel by diffusion from cytoplasm to ER. Activated calcium channel will release the calcium from ER into cytoplasm. Calcium can activate the kinase activity of PKC.

PW109053

Pw109053 View Pathway
signaling

Activation of PKC Through G Protein-Coupled Receptor

Rattus norvegicus
G protein-coupled receptors sense stimuli outside the cell and transmit signals across the plasma membrane. Activation of protein kinase C (PKC) is one of the common signaling pathways. When a class of GPCRs are activated by a ligand, they activate Gq protein to bind GTP instead of GDP. After the Gq becomes active, it activates phospholipase C (PLC) to cleave the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacyl glycerol (DAG). IP3 can bind Ins3P receptor to open calcium channel by diffusion from cytoplasm to ER. Activated calcium channel will release the calcium from ER into cytoplasm. Calcium can activate the kinase activity of PKC.

PW109042

Pw109042 View Pathway
signaling

Activation of PKC Through G Protein-Coupled Receptor

Bos taurus
G protein-coupled receptors sense stimuli outside the cell and transmit signals across the plasma membrane. Activation of protein kinase C (PKC) is one of the common signaling pathways. When a class of GPCRs are activated by a ligand, they activate Gq protein to bind GTP instead of GDP. After the Gq becomes active, it activates phospholipase C (PLC) to cleave the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacyl glycerol (DAG). IP3 can bind Ins3P receptor to open calcium channel by diffusion from cytoplasm to ER. Activated calcium channel will release the calcium from ER into cytoplasm. Calcium can activate the kinase activity of PKC.