PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW147049View Pathway |
Vitamin D Drug Metabolism PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 10, 2023 at 13:44 Last Updated: October 10, 2023 at 13:44 |
PW000782View Pathway |
physiological
Vitamin D in skinHomo sapiens
Trying to draw Vitamin D pathway in skin
|
Creator: Guest: Anonymous Created On: February 24, 2015 at 04:10 Last Updated: February 24, 2015 at 04:10 |
PW122363View Pathway |
Vitamin D MetabolismHomo sapiens
|
Creator: Guest: Anonymous Created On: March 05, 2019 at 05:23 Last Updated: March 05, 2019 at 05:23 |
PW146978View Pathway |
Vitamin D3 Drug Metabolism PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 10, 2023 at 13:34 Last Updated: October 10, 2023 at 13:34 |
PW088340View Pathway |
Vitamin K MetabolismRattus norvegicus
Vitamin K describes a group of lipophilic, hydrophobic vitamins that exist naturally in two forms (and synthetically in three others): vitamin K1, which is found in plants, and vitamin K2, which is synthesized by bacteria. Vitamin K is an important dietary component because it is necessary as a cofacter in the activation of vitamin K dependent proteins. Metabolism of vitamin K occurs mainly in the liver. In the first step, vitamin K is reduced to its quinone form by a quinone reductase such as NAD(P)H dehydrogenase. Reduced vitamin K is the form required to convert vitamin K dependent protein precursors to their active states. It acts as a cofactor to the integral membrane enzyme vitamin K-dependent gamma-carboxylase (along with water and carbon dioxide as co-substrates), which carboxylates glutamyl residues to gamma-carboxy-glutamic acid residues on certain proteins, activating them. Each converted glutamyl residue produces a molecule of vitamin K epoxide, and certain proteins may have more than one residue requiring carboxylation. To complete the cycle, the vitamin K epoxide is returned to vitamin K via the vitamin K epoxide reductase enzyme, also an integral membrane protein. The vitamin K dependent proteins include a number of important coagulation factors, such as prothrombin. Thus, warfarin and other coumarin drugs act as anticoagulants by blocking vitamin K epoxide reductase.
|
Creator: Ana Marcu Created On: August 10, 2018 at 14:00 Last Updated: August 10, 2018 at 14:00 |
PW064566View Pathway |
Vitamin K MetabolismMus musculus
Vitamin K describes a group of lipophilic, hydrophobic vitamins that exist naturally in two forms (and synthetically in three others): vitamin K1, which is found in plants, and vitamin K2, which is synthesized by bacteria. Vitamin K is an important dietary component because it is necessary as a cofacter in the activation of vitamin K dependent proteins. Metabolism of vitamin K occurs mainly in the liver. In the first step, vitamin K is reduced to its quinone form by a quinone reductase such as NAD(P)H dehydrogenase. Reduced vitamin K is the form required to convert vitamin K dependent protein precursors to their active states. It acts as a cofactor to the integral membrane enzyme vitamin K-dependent gamma-carboxylase (along with water and carbon dioxide as co-substrates), which carboxylates glutamyl residues to gamma-carboxy-glutamic acid residues on certain proteins, activating them. Each converted glutamyl residue produces a molecule of vitamin K epoxide, and certain proteins may have more than one residue requiring carboxylation. To complete the cycle, the vitamin K epoxide is returned to vitamin K via the vitamin K epoxide reductase enzyme, also an integral membrane protein. The vitamin K dependent proteins include a number of important coagulation factors, such as prothrombin. Thus, warfarin and other coumarin drugs act as anticoagulants by blocking vitamin K epoxide reductase.
|
Creator: Carin Li Created On: January 21, 2018 at 17:24 Last Updated: January 21, 2018 at 17:24 |
PW000047View Pathway |
Vitamin K MetabolismHomo sapiens
Vitamin K describes a group of lipophilic, hydrophobic vitamins that exist naturally in two forms (and synthetically in three others): vitamin K1, which is found in plants, and vitamin K2, which is synthesized by bacteria. Vitamin K is an important dietary component because it is necessary as a cofacter in the activation of vitamin K dependent proteins. Metabolism of vitamin K occurs mainly in the liver. In the first step, vitamin K is reduced to its quinone form by a quinone reductase such as NAD(P)H dehydrogenase. Reduced vitamin K is the form required to convert vitamin K dependent protein precursors to their active states. It acts as a cofactor to the integral membrane enzyme vitamin K-dependent gamma-carboxylase (along with water and carbon dioxide as co-substrates), which carboxylates glutamyl residues to gamma-carboxy-glutamic acid residues on certain proteins, activating them. Each converted glutamyl residue produces a molecule of vitamin K epoxide, and certain proteins may have more than one residue requiring carboxylation. To complete the cycle, the vitamin K epoxide is returned to vitamin K via the vitamin K epoxide reductase enzyme, also an integral membrane protein. The vitamin K dependent proteins include a number of important coagulation factors, such as prothrombin. Thus, warfarin and other coumarin drugs act as anticoagulants by blocking vitamin K epoxide reductase.
|
Creator: WishartLab Created On: August 01, 2013 at 13:54 Last Updated: August 01, 2013 at 13:54 |
PW088246View Pathway |
Vitamin K MetabolismBos taurus
Vitamin K describes a group of lipophilic, hydrophobic vitamins that exist naturally in two forms (and synthetically in three others): vitamin K1, which is found in plants, and vitamin K2, which is synthesized by bacteria. Vitamin K is an important dietary component because it is necessary as a cofacter in the activation of vitamin K dependent proteins. Metabolism of vitamin K occurs mainly in the liver. In the first step, vitamin K is reduced to its quinone form by a quinone reductase such as NAD(P)H dehydrogenase. Reduced vitamin K is the form required to convert vitamin K dependent protein precursors to their active states. It acts as a cofactor to the integral membrane enzyme vitamin K-dependent gamma-carboxylase (along with water and carbon dioxide as co-substrates), which carboxylates glutamyl residues to gamma-carboxy-glutamic acid residues on certain proteins, activating them. Each converted glutamyl residue produces a molecule of vitamin K epoxide, and certain proteins may have more than one residue requiring carboxylation. To complete the cycle, the vitamin K epoxide is returned to vitamin K via the vitamin K epoxide reductase enzyme, also an integral membrane protein. The vitamin K dependent proteins include a number of important coagulation factors, such as prothrombin. Thus, warfarin and other coumarin drugs act as anticoagulants by blocking vitamin K epoxide reductase.
|
Creator: Ana Marcu Created On: August 10, 2018 at 11:46 Last Updated: August 10, 2018 at 11:46 |
PW124427View Pathway |
Vitamin K Metabolism 1610307792Homo sapiens
Vitamin K describes a group of lipophilic, hydrophobic vitamins that exist naturally in two forms (and synthetically in three others): vitamin K1, which is found in plants, and vitamin K2, which is synthesized by bacteria. Vitamin K is an important dietary component because it is necessary as a cofacter in the activation of vitamin K dependent proteins. Metabolism of vitamin K occurs mainly in the liver. In the first step, vitamin K is reduced to its quinone form by a quinone reductase such as NAD(P)H dehydrogenase. Reduced vitamin K is the form required to convert vitamin K dependent protein precursors to their active states. It acts as a cofactor to the integral membrane enzyme vitamin K-dependent gamma-carboxylase (along with water and carbon dioxide as co-substrates), which carboxylates glutamyl residues to gamma-carboxy-glutamic acid residues on certain proteins, activating them. Each converted glutamyl residue produces a molecule of vitamin K epoxide, and certain proteins may have more than one residue requiring carboxylation. To complete the cycle, the vitamin K epoxide is returned to vitamin K via the vitamin K epoxide reductase enzyme, also an integral membrane protein. The vitamin K dependent proteins include a number of important coagulation factors, such as prothrombin. Thus, warfarin and other coumarin drugs act as anticoagulants by blocking vitamin K epoxide reductase.
|
Creator: WishartLab Created On: January 10, 2021 at 12:43 Last Updated: January 10, 2021 at 12:43 |
PW124428View Pathway |
Vitamin K Metabolism 1610307897Homo sapiens
Vitamin K describes a group of lipophilic, hydrophobic vitamins that exist naturally in two forms (and synthetically in three others): vitamin K1, which is found in plants, and vitamin K2, which is synthesized by bacteria. Vitamin K is an important dietary component because it is necessary as a cofacter in the activation of vitamin K dependent proteins. Metabolism of vitamin K occurs mainly in the liver. In the first step, vitamin K is reduced to its quinone form by a quinone reductase such as NAD(P)H dehydrogenase. Reduced vitamin K is the form required to convert vitamin K dependent protein precursors to their active states. It acts as a cofactor to the integral membrane enzyme vitamin K-dependent gamma-carboxylase (along with water and carbon dioxide as co-substrates), which carboxylates glutamyl residues to gamma-carboxy-glutamic acid residues on certain proteins, activating them. Each converted glutamyl residue produces a molecule of vitamin K epoxide, and certain proteins may have more than one residue requiring carboxylation. To complete the cycle, the vitamin K epoxide is returned to vitamin K via the vitamin K epoxide reductase enzyme, also an integral membrane protein. The vitamin K dependent proteins include a number of important coagulation factors, such as prothrombin. Thus, warfarin and other coumarin drugs act as anticoagulants by blocking vitamin K epoxide reductase.
|
Creator: WishartLab Created On: January 10, 2021 at 12:45 Last Updated: January 10, 2021 at 12:45 |