Loader

Pathways

PathWhiz ID Pathway Meta Data

PW144443

Pw144443 View Pathway
drug action

Acetaminophen Drug Metabolism Action Pathway

Homo sapiens

PW124159

Pw124159 View Pathway
drug action

Acetaminophen Action Pathway (New)

Homo sapiens
Acetaminophen is an oral/IV antipyretic and analgesic drug used to treat fevers and mild to moderate pain. Its exact mechanism is unknown but it is thought to target the cyclooxygenase pathway in the CNS (brain). It does not inhibit the cyclooxygenase pathway in peripheral tissues, an therefore, does not have any peripheral anti-inflammatory effect. The cyclooxygenase (COX) pathway begins in the cytosol with arachidonic acid being formed from membrane phospholipids via phospholipase A2. On the endoplasmic reticulum membrane, arachidonic acid is converted to prostaglandin G2 then to prostaglandin H2 using the enzymes prostaglandin G/H synthase 1 & 2 (COX-1 & COX-2). Prostaglandin H2 leads to the formation of thromboxane A2 (via thromboxane-A synthase), prostacyclin (via prostacyclin synthase) and prostaglandin E2 (via prostaglandin E synthase). Prostaglandin E2 (PGE2) is responsible for mediating pain and fever. Acetaminophen enters the cell through the solute carrier family 22-member 6 transporter and inhibits the COX-1 & COX-2 enzymes on the endoplasmic reticulum membrane. This prevents the production of prostaglandin H2 from arachidonic acid, thereby lowering the concentration of prostaglandin E2 in the cell. Since PGE2 causes pain and fever, reduction of PGE2 would lessen fevers and increase threshold for pain sensation. There are very few side effects associated with acetaminophen, but some people may have allergic reactions which may include itching, rash, difficulty breathing and swelling of face, hands, throat or mouth.

PW000687

Pw000687 View Pathway
drug action

Acetaminophen Action Pathway

Homo sapiens
Acetaminophen (also named paracetamol or APAP) is not a Nonsteroidal anti-inflammatory drugs (NSAIDs). However, it still can be used to treat pain and fever. Acetaminophen can block prostaglandin synthesis by the action of inhibition of prostaglandin G/H synthase 1 and 2. Prostaglandin G/H synthase 1 and 2 catalyze the arachidonic acid to prostaglandin G2, and also catalyze prostaglandin G2 to prostaglandin H2 in the metabolism pathway. Decreased prostaglandin synthesis in many animal model's cell is caused by presence of acetaminophen.

PW176847

Pw176847 View Pathway
drug action

Aceprometazine H1-Antihistamine Immune Response Action Pathway

Homo sapiens
Aceprometazine is a is a drug with neuroleptic and anti-histamine properties. Although not widely prescribed, it is used in combination with meprobamate for the treatment of sleep disorders in France under the trade name Mepronizine. Aceprometazine, acting as an H1-receptor antagonist can induce sedation by being able to cross the blood-brain-barrier and binding to H1-receptors in the central nervous system. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage.

PW176755

Pw176755 View Pathway
drug action

Aceprometazine H1-Antihistamine Blood Vessel Constriction Action Pathway

Homo sapiens
Aceprometazine is a is a drug with neuroleptic and anti-histamine properties. Although not widely prescribed, it is used in combination with meprobamate for the treatment of sleep disorders in France under the trade name Mepronizine. Aceprometazine, acting as an H1-receptor antagonist can induce sedation by being able to cross the blood-brain-barrier and binding to H1-receptors in the central nervous system.

PW176662

Pw176662 View Pathway
drug action

Aceprometazine H1 Antihistamine Smooth Muscle Relaxation Action Pathway

Homo sapiens
Aceprometazine is a is a drug with neuroleptic and anti-histamine properties. Although not widely prescribed, it is used in combination with meprobamate for the treatment of sleep disorders in France under the trade name Mepronizine. Aceprometazine, acting as an H1-receptor antagonist can induce sedation by being able to cross the blood-brain-barrier and binding to H1-receptors in the central nervous system. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage.

PW147104

Pw147104 View Pathway
drug action

Aceprometazine H1 Antihistamine Neurological Sleep Action Pathway

Homo sapiens
Aceprometazine is an ethanolamine class H1 antihistamine used to treat insomnia and allergy symptoms such as hay fever and hives. It is also used with pyridoxine in the treatment of nausea and vomiting in pregnancy. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Wakefulness is regulated by histamine in the tuberomammillary nucleus, a part of the hypothalamus. Histidine is decarboxylated into histamine in the neuron. Histamine is transported into synaptic vesicles by a monoamine transporter then released into the synapse. Normally histamine would activate the H1 histamine receptor on the post-synaptic neuron in the tuberomammillary nucleus. Aceprometazine inhibits the H1 histamine receptor, preventing the depolarization of the post-synaptic neuron. This prevents the wakefulness signal from being sent to the major areas of the brain, causing sleepiness.

PW128177

Pw128177 View Pathway
drug action

Acepromazine Dopamine Antagonist Action Pathway

Homo sapiens
Acepromazine is a phenothiazine tranquilizer that blocks dopamine receptors in the CNS and depresses the reticular-activating system, resulting in sedation. Acepromazine was first used in humans in the 1950s as an antipsychotic agent. It is now rarely used in humans. Acepromazine is frequently used in animals as a sedative and antiemetic. Its principal value is in quietening and calming anxious animals. Acepromazine acts as an antagonist (blocking agent) on different postsynaptic receptors -on dopaminergic-receptors (subtypes D1, D2, D3 and D4 - different antipsychotic properties on productive and unproductive symptoms), on serotonergic-receptors (5-HT1 and 5-HT2, with anxiolytic, antidepressive and antiaggressive properties as well as an attenuation of extrapyramidal side-effects, but also leading to weight gain, fall in blood pressure, sedation and ejaculation difficulties), on histaminergic-receptors (H1-receptors, sedation, antiemesis, vertigo, fall in blood pressure and weight gain), alpha1/alpha2-receptors (antisympathomimetic properties, lowering of blood pressure, reflex tachycardia, vertigo, sedation, hypersalivation and incontinence as well as sexual dysfunction, but may also attenuate pseudoparkinsonism - controversial) and finally on muscarinic (cholinergic) M1/M2-receptors (causing anticholinergic symptoms like dry mouth, blurred vision, obstipation, difficulty/inability to urinate, sinus tachycardia, ECG-changes and loss of memory, but the anticholinergic action may attenuate extrapyramidal side-effects).

PW128188

Pw128188 View Pathway
drug action

Acepromazine - Serotonin Antagonist Action Pathway

Homo sapiens
Acepromazine is a phenothiazine tranquilizer that blocks dopamine receptors in the CNS and depresses the reticular-activating system, resulting in sedation. Acepromazine was first used in humans in the 1950s as an antipsychotic agent. It is now rarely used in humans. Acepromazine is frequently used in animals as a sedative and antiemetic. Its principal value is in quietening and calming anxious animals. Acepromazine acts as an antagonist (blocking agent) on different postsynaptic receptors -on dopaminergic-receptors (subtypes D1, D2, D3 and D4 - different antipsychotic properties on productive and unproductive symptoms), on serotonergic-receptors (5-HT1 and 5-HT2, with anxiolytic, antidepressive and antiaggressive properties as well as an attenuation of extrapyramidal side-effects, but also leading to weight gain, fall in blood pressure, sedation and ejaculation difficulties), on histaminergic-receptors (H1-receptors, sedation, antiemesis, vertigo, fall in blood pressure and weight gain), alpha1/alpha2-receptors (antisympathomimetic properties, lowering of blood pressure, reflex tachycardia, vertigo, sedation, hypersalivation and incontinence as well as sexual dysfunction, but may also attenuate pseudoparkinsonism - controversial) and finally on muscarinic (cholinergic) M1/M2-receptors (causing anticholinergic symptoms like dry mouth, blurred vision, obstipation, difficulty/inability to urinate, sinus tachycardia, ECG-changes and loss of memory, but the anticholinergic action may attenuate extrapyramidal side-effects).

PW176361

Pw176361 View Pathway
metabolic

Acenocoumarol Predicted Metabolism Pathway

Homo sapiens
Metabolites of Acenocoumarol are predicted with biotransformer.