Loader

Pathways

PathWhiz ID Pathway Meta Data

PW121842

Pw121842 View Pathway
disease

3-Hydroxyisobutyric Acid Dehydrogenase Deficiency

Mus musculus
3-Hydroxyisobutyric acid dehydrogenase deficiency (3-hydroxyisobutyric aciduria) is an extremely rare inborn error of metabolism (IEM), potentially caused by numerous mechanisms. It is currently thought to be autosomal recessively inherited. At least two cases of 3-hydroxyisobutyric aciduria were determined to be caused by a mutation in the ALDH6A1 gene, which encodes acylating methylmalonate-semialdehyde dehydrogenase. This enzyme converts 2-methyl-3-oxopropanoate, CoA and water into propanoyl-CoA, using NAD+ as an oxidizing agent, and producing a hydrogen ion and hydrogencarbonate as byproducts. Other forms of 3-hydroxyisobutyric aciduria may be caused by a mutation in the gene encoding 3-hydroxyisobutyrate dehydrogenase, which forms (S)-methylmalonic acid semialdehyde from (S)-3-hydroxyisobutyric acid. This mutation leads to an accumulation of (S)-3-hydroxyisobutyric acid, as no other processes in the pathway use it. 3-hydroxyisobutyric aciduria is characterized by elevated levels of 3-hydroxyisobutyric acid excreted in the urine. Symptoms of the disorder include dysmorphic features, developmental delays and intellectual disabilities. Treatments are not currently well researched due to the rarity of the condition, but protein-restricted diets may be helpful. It is estimated that 3-hydroxyisobutyric aciduria affects less than 1 in 1,000,000 people, with only 12 cases having been reported by 2006.

PW000497

Pw000497 View Pathway
disease

3-Hydroxyisobutyric Acid Dehydrogenase Deficiency

Homo sapiens
3-Hydroxyisobutyric acid dehydrogenase deficiency (3-hydroxyisobutyric aciduria) is an extremely rare inborn error of metabolism (IEM), potentially caused by numerous mechanisms. It is currently thought to be autosomal recessively inherited. At least two cases of 3-hydroxyisobutyric aciduria were determined to be caused by a mutation in the ALDH6A1 gene, which encodes acylating methylmalonate-semialdehyde dehydrogenase. This enzyme converts 2-methyl-3-oxopropanoate, CoA and water into propanoyl-CoA, using NAD+ as an oxidizing agent, and producing a hydrogen ion and hydrogencarbonate as byproducts. Other forms of 3-hydroxyisobutyric aciduria may be caused by a mutation in the gene encoding 3-hydroxyisobutyrate dehydrogenase, which forms (S)-methylmalonic acid semialdehyde from (S)-3-hydroxyisobutyric acid. This mutation leads to an accumulation of (S)-3-hydroxyisobutyric acid, as no other processes in the pathway use it. 3-hydroxyisobutyric aciduria is characterized by elevated levels of 3-hydroxyisobutyric acid excreted in the urine. Symptoms of the disorder include dysmorphic features, developmental delays and intellectual disabilities. Treatments are not currently well researched due to the rarity of the condition, but protein-restricted diets may be helpful. It is estimated that 3-hydroxyisobutyric aciduria affects less than 1 in 1,000,000 people, with only 12 cases having been reported by 2006.

PW127238

Pw127238 View Pathway
disease

3-Hydroxyisobutyric Acid Dehydrogenase Deficiency

Homo sapiens
3-Hydroxyisobutyric acid dehydrogenase deficiency (3-hydroxyisobutyric aciduria) is an extremely rare inborn error of metabolism (IEM), potentially caused by numerous mechanisms. It is currently thought to be autosomal recessively inherited. At least two cases of 3-hydroxyisobutyric aciduria were determined to be caused by a mutation in the ALDH6A1 gene, which encodes acylating methylmalonate-semialdehyde dehydrogenase. This enzyme converts 2-methyl-3-oxopropanoate, CoA and water into propanoyl-CoA, using NAD+ as an oxidizing agent, and producing a hydrogen ion and hydrogencarbonate as byproducts. Other forms of 3-hydroxyisobutyric aciduria may be caused by a mutation in the gene encoding 3-hydroxyisobutyrate dehydrogenase, which forms (S)-methylmalonic acid semialdehyde from (S)-3-hydroxyisobutyric acid. This mutation leads to an accumulation of (S)-3-hydroxyisobutyric acid, as no other processes in the pathway use it. 3-hydroxyisobutyric aciduria is characterized by elevated levels of 3-hydroxyisobutyric acid excreted in the urine. Symptoms of the disorder include dysmorphic features, developmental delays and intellectual disabilities. Treatments are not currently well researched due to the rarity of the condition, but protein-restricted diets may be helpful. It is estimated that 3-hydroxyisobutyric aciduria affects less than 1 in 1,000,000 people, with only 12 cases having been reported by 2006.

PW124648

Pw124648 View Pathway
metabolic

3-Hydroxydecanoyl Test

Homo sapiens

PW121917

Pw121917 View Pathway
disease

3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency

Rattus norvegicus
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-Hydroxy-3-methylglutaric acidemia; Leucine metabolism, defect in, HMG-CoA lyase deficiency) is an autosomal recessive disease caused by a mutation in the HMGCL gene which codes for hydroxymethylglutaryl-CoA lyase. A deficiency in this enzyme results in accumulation of 3-hydroxymethylglutaric acid, 3-hydroxyisovaleric acid, 3-methylcrotonylglycine and 3-methylglutaconic acid (cis and trans form), and methylglutaric acid in urine; and ammonia in blood. Symptoms include cardiomyopathy, dehydration, hypotonia, lactic acidosis, and pancreatitis. Treatment includes a low-fat, low-protein, high-carbohydrate diet.

PW127225

Pw127225 View Pathway
disease

3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency

Homo sapiens
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-Hydroxy-3-methylglutaric acidemia; Leucine metabolism, defect in, HMG-CoA lyase deficiency) is an autosomal recessive disease caused by a mutation in the HMGCL gene which codes for hydroxymethylglutaryl-CoA lyase. A deficiency in this enzyme results in accumulation of 3-hydroxymethylglutaric acid, 3-hydroxyisovaleric acid, 3-methylcrotonylglycine and 3-methylglutaconic acid (cis and trans form), and methylglutaric acid in urine; and ammonia in blood. Symptoms include cardiomyopathy, dehydration, hypotonia, lactic acidosis, and pancreatitis. Treatment includes a low-fat, low-protein, high-carbohydrate diet.

PW121691

Pw121691 View Pathway
disease

3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency

Mus musculus
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-Hydroxy-3-methylglutaric acidemia; Leucine metabolism, defect in, HMG-CoA lyase deficiency) is an autosomal recessive disease caused by a mutation in the HMGCL gene which codes for hydroxymethylglutaryl-CoA lyase. A deficiency in this enzyme results in accumulation of 3-hydroxymethylglutaric acid, 3-hydroxyisovaleric acid, 3-methylcrotonylglycine and 3-methylglutaconic acid (cis and trans form), and methylglutaric acid in urine; and ammonia in blood. Symptoms include cardiomyopathy, dehydration, hypotonia, lactic acidosis, and pancreatitis. Treatment includes a low-fat, low-protein, high-carbohydrate diet.

PW000063

Pw000063 View Pathway
disease

3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency

Homo sapiens
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (3-Hydroxy-3-methylglutaric acidemia; Leucine metabolism, defect in, HMG-CoA lyase deficiency) is an autosomal recessive disease caused by a mutation in the HMGCL gene which codes for hydroxymethylglutaryl-CoA lyase. A deficiency in this enzyme results in accumulation of 3-hydroxymethylglutaric acid, 3-hydroxyisovaleric acid, 3-methylcrotonylglycine and 3-methylglutaconic acid (cis and trans form), and methylglutaric acid in urine; and ammonia in blood. Symptoms include cardiomyopathy, dehydration, hypotonia, lactic acidosis, and pancreatitis. Treatment includes a low-fat, low-protein, high-carbohydrate diet.

PW122130

Pw122130 View Pathway
disease

3-beta-Hydroxysteroid Dehydrogenase Deficiency

Rattus norvegicus
3-beta-hydroxysteroid dehydrogenase (HSD) deficiency is an extremely rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by an defect in the HSD3B2 gene which encodes for the 3 beta-hydroxysteroid dehydrogenase enzyme, which is responsible for forming cortisol from 11b,17a,21-trihydroxypregnenolone. When the enzyme is not correctly produced, cortisol levels in the cell are lowered, and as cortisol is used in the production of other steroids, it may affect their levels as well. 3-beta-HSD deficiency is characterized by low levels of cortisol produced in the adrenal glands. Symptoms include abnormal genitalia for both males and females, as well as infertility. There is also a more severe salt-wasting form of this deficiency, characterized by dehydration. Treatment for 3-beta-HSD deficiency includes steroid replacement, as well as sex hormone replacement during puberty to allow proper development. Surgery can also be used to correct any genital abnormalities that may occur. It is estimated that 3-beta-HSD deficiency affects less than 1 in 1,000,000 individuals, with around 60 cases reported.

PW121906

Pw121906 View Pathway
disease

3-beta-Hydroxysteroid Dehydrogenase Deficiency

Mus musculus
3-beta-hydroxysteroid dehydrogenase (HSD) deficiency is an extremely rare inborn error of metabolism (IEM) and autosomal recessive disorder of the steroidogenesis pathway. It is caused by an defect in the HSD3B2 gene which encodes for the 3 beta-hydroxysteroid dehydrogenase enzyme, which is responsible for forming cortisol from 11b,17a,21-trihydroxypregnenolone. When the enzyme is not correctly produced, cortisol levels in the cell are lowered, and as cortisol is used in the production of other steroids, it may affect their levels as well. 3-beta-HSD deficiency is characterized by low levels of cortisol produced in the adrenal glands. Symptoms include abnormal genitalia for both males and females, as well as infertility. There is also a more severe salt-wasting form of this deficiency, characterized by dehydration. Treatment for 3-beta-HSD deficiency includes steroid replacement, as well as sex hormone replacement during puberty to allow proper development. Surgery can also be used to correct any genital abnormalities that may occur. It is estimated that 3-beta-HSD deficiency affects less than 1 in 1,000,000 individuals, with around 60 cases reported.