Loader

Pathways

PathWhiz ID Pathway Meta Data

PW127344

Pw127344 View Pathway
disease

Biotinidase Deficiency

Homo sapiens
Biotinidase deficiency (Multiple carboxylase deficiency) is an autosomal recessive disease caused by a mutation in the BTD gene which codes for biotinidase. A deficiency in this enzyme results in accumulation of ammonia and ketone bodies in blood; 3-hydroxyisovaleric acid in plasma, spinal fluid, and urine; hydroxypropionic acid, 2-hydroxybutyric acid, 3-Hydroxybutyric acid, and citric acid in spinal fluid; and 3-methylcrotonylglycine, hydroxypropionic acid, and L and D-lactic acid in urine. Symptoms, which can present from birth into adulthood include hypotonia, ketosis, hyperammonemia, motor retardation, coma, and seborrhoic skin rash. Treatment includes biotin.

PW121936

Pw121936 View Pathway
disease

Biotinidase Deficiency

Rattus norvegicus
Biotinidase deficiency (Multiple carboxylase deficiency) is an autosomal recessive disease caused by a mutation in the BTD gene which codes for biotinidase. A deficiency in this enzyme results in accumulation of ammonia and ketone bodies in blood; 3-hydroxyisovaleric acid in plasma, spinal fluid, and urine; hydroxypropionic acid, 2-hydroxybutyric acid, 3-Hydroxybutyric acid, and citric acid in spinal fluid; and 3-methylcrotonylglycine, hydroxypropionic acid, and L and D-lactic acid in urine. Symptoms, which can present from birth into adulthood include hypotonia, ketosis, hyperammonemia, motor retardation, coma, and seborrhoic skin rash. Treatment includes biotin.

PW121711

Pw121711 View Pathway
disease

Biotinidase Deficiency

Mus musculus
Biotinidase deficiency (Multiple carboxylase deficiency) is an autosomal recessive disease caused by a mutation in the BTD gene which codes for biotinidase. A deficiency in this enzyme results in accumulation of ammonia and ketone bodies in blood; 3-hydroxyisovaleric acid in plasma, spinal fluid, and urine; hydroxypropionic acid, 2-hydroxybutyric acid, 3-Hydroxybutyric acid, and citric acid in spinal fluid; and 3-methylcrotonylglycine, hydroxypropionic acid, and L and D-lactic acid in urine. Symptoms, which can present from birth into adulthood include hypotonia, ketosis, hyperammonemia, motor retardation, coma, and seborrhoic skin rash. Treatment includes biotin.

PW002067

Pw002067 View Pathway
metabolic

Biotin-Carboxyl Carrier Protein Assembly

Escherichia coli
The assembly of a biotin-carboxyl carrier protein starts with a biotin carboxyl carrier protein monomer interacting with an ATP, and a biotin through a biotin -acetyl-coa-carboxylase ligase resulting in the release of a hydrogen ion, an AMP, a diphosphate and a biotynylated BCCP monomer. The latter compound reacts spontaneously to create a biotinylated BCCP dimer. This compound in turn reacts with a hydrogen carbonate and an ATP driven biotin carboxylase resulting in the release of ADP, a hydrogen Ion , a phosphate and a carboxylated biotinylated BCCP dimer. This complex can be degraded by reacting with water, an acetyl0CoA, and an ATP driven acetyl-CoA carboxyltransferase resulting in the release of a hydrogen ion, a phosphate, an ADP, a malonyl-CoA and a biotynylated BCCP dimer

PW123550

Pw123550 View Pathway
metabolic

Biotin-Carboxyl Carrier Protein Assembly

Pseudomonas aeruginosa
The assembly of a biotin-carboxyl carrier protein starts with a biotin carboxyl carrier protein monomer interacting with an ATP, and a biotin through a biotin -acetyl-coa-carboxylase ligase resulting in the release of a hydrogen ion, an AMP, a diphosphate and a biotynylated BCCP monomer. The latter compound reacts spontaneously to create a biotinylated BCCP dimer. This compound in turn reacts with a hydrogen carbonate and an ATP driven biotin carboxylase resulting in the release of ADP, a hydrogen Ion , a phosphate and a carboxylated biotinylated BCCP dimer. This complex can be degraded by reacting with water, an acetyl0CoA, and an ATP driven acetyl-CoA carboxyltransferase resulting in the release of a hydrogen ion, a phosphate, an ADP, a malonyl-CoA and a biotynylated BCCP dimer

PW124183

Pw124183 View Pathway
metabolic

Biotin Metabolism

Arabidopsis thaliana
Biotin is an essential vitamin, which most plants such as Arabidopsis thaliana is capable of synthesizing on its own. Biotin also takes place in numerous carboxylation, decarboxylation and transcarboxylation reactions acting as a cofactor to transfer carbon dioxide to its respective place. Biotin transporters are vital to the regulation of biotin needs in plant cells as it plays a role in its continued use and synthesis within the plant. A.thaliana synthesis of biotin is required to help supplement heterotrophs (that cannot synthesize biotin on their own) such as humans, as it aids in many metabolic processes.

PW064578

Pw064578 View Pathway
metabolic

Biotin Metabolism

Mus musculus
Biotin is a vitamin that is an essential nutrient for humans. Biotin can be absorbed from consuming various foods such as: legumes, soybeans, tomatoes, romaine lettuce, eggs, cow's milk, oats and many more. Biotin acts as a cofactor for enzymes to catalyze carboxylation reactions involved in gluconeogenesis, amino acid catabolism and fatty acid metabolism. Biotin deficiency has been associated with many human diseases. These diseases may be caused by dysfunctional biotin metabolism due to enzyme deficiencies. Some research suggests biotin may play a role in transcription regulation or protein expression which may lead to biotin related diseases.

PW088202

Pw088202 View Pathway
metabolic

Biotin Metabolism

Bos taurus
Biotin is a vitamin that is an essential nutrient for humans. Biotin can be absorbed from consuming various foods such as: legumes, soybeans, tomatoes, romaine lettuce, eggs, cow's milk, oats and many more. Biotin acts as a cofactor for enzymes to catalyze carboxylation reactions involved in gluconeogenesis, amino acid catabolism and fatty acid metabolism. Biotin deficiency has been associated with many human diseases. These diseases may be caused by dysfunctional biotin metabolism due to enzyme deficiencies. Some research suggests biotin may play a role in transcription regulation or protein expression which may lead to biotin related diseases.

PW088396

Pw088396 View Pathway
metabolic

Biotin Metabolism

Drosophila melanogaster
Biotin is a vitamin that is an essential nutrient for humans. Biotin can be absorbed from consuming various foods such as: legumes, soybeans, tomatoes, romaine lettuce, eggs, cow's milk, oats and many more. Biotin acts as a cofactor for enzymes to catalyze carboxylation reactions involved in gluconeogenesis, amino acid catabolism and fatty acid metabolism. Biotin deficiency has been associated with many human diseases. These diseases may be caused by dysfunctional biotin metabolism due to enzyme deficiencies. Some research suggests biotin may play a role in transcription regulation or protein expression which may lead to biotin related diseases.

PW000013

Pw000013 View Pathway
metabolic

Biotin Metabolism

Homo sapiens
Biotin is a vitamin that is an essential nutrient for humans. Biotin can be absorbed from consuming various foods such as: legumes, soybeans, tomatoes, romaine lettuce, eggs, cow's milk, oats and many more. Biotin acts as a cofactor for enzymes to catalyze carboxylation reactions involved in gluconeogenesis, amino acid catabolism and fatty acid metabolism. Biotin deficiency has been associated with many human diseases. These diseases may be caused by dysfunctional biotin metabolism due to enzyme deficiencies. Some research suggests biotin may play a role in transcription regulation or protein expression which may lead to biotin related diseases.