Loader

Pathways

PathWhiz ID Pathway Meta Data

PW354831

Pw354831 View Pathway
metabolic

Xylose Degradation I

Acetomicrobium hydrogeniformans
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW354590

Pw354590 View Pathway
metabolic

Xylose Degradation I

Escherichia coli IAI39
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW354588

Pw354588 View Pathway
metabolic

Xylose Degradation I

Escherichia coli S88
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW354583

Pw354583 View Pathway
metabolic

Xylose Degradation I

Escherichia coli O157:H7 str. EC4115
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW337402

Pw337402 View Pathway
metabolic

Xylose Degradation I

Bacteroides stercoris ATCC 43183
Escherichia coli can utilize D-xylose as the sole source of carbon and energy for the cell. A low-affinity proton motive force or a high-affinity ATP-driven (ABC) transport system brings unphosphorylated D-xylose into the cell. Following entry, D-xylose is converted to D-xylulose by an isomerase and then converted to the pentose phosphate pathway intermediate, D-xylulose 5-phosphate via a kinase. D-xylulose 5-phosphate can then enter pathways of metabolism to meet the cells needs.

PW146148

Pw146148 View Pathway
drug action

Xylose Drug Metabolism Action Pathway

Homo sapiens

PW123873

Pw123873 View Pathway
signaling

yap taz

Mus musculus

PW145407

Pw145407 View Pathway
drug action

Yohimbine Drug Metabolism Action Pathway

Homo sapiens

PW176298

Pw176298 View Pathway
metabolic

Yohimbine Predicted Metabolism Pathway

Homo sapiens
Metabolites of Yohimbine are predicted with biotransformer.

PW146580

Pw146580 View Pathway
drug action

Yttrium Y-90 Drug Metabolism Action Pathway

Homo sapiens