PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW000074View Pathway |
disease
5-OxoprolinuriaHomo sapiens
5-Oxoprolinuria (5-Oxoprolinase deficiency) is a result of a defect in the gamma-glutamyl cycle due to either 5-oxoprolinase or glutathione synthetase deficiency. In the case of glutathione synthetase deficiency, the glycine is not incorporated into gamma-glutamylcysteine. In the case of 5-oxoprolinase, however, pyroglutamic acid accumulates. Symptoms include anemia, mental retardation, metabolic acidosis, respiratory distress and urolithiasis.
|
Creator: WishartLab Created On: August 01, 2013 at 15:52 Last Updated: August 01, 2013 at 15:52 |
PW127179View Pathway |
disease
5-OxoprolinuriaHomo sapiens
5-Oxoprolinuria (5-Oxoprolinase deficiency) is a result of a defect in the gamma-glutamyl cycle due to either 5-oxoprolinase or glutathione synthetase deficiency. In the case of glutathione synthetase deficiency, the glycine is not incorporated into gamma-glutamylcysteine. In the case of 5-oxoprolinase, however, pyroglutamic acid accumulates. Symptoms include anemia, mental retardation, metabolic acidosis, respiratory distress and urolithiasis.
|
Creator: Ray Kruger Created On: November 02, 2022 at 15:31 Last Updated: November 02, 2022 at 15:31 |
PW121697View Pathway |
disease
5-OxoprolinuriaMus musculus
5-Oxoprolinuria (5-Oxoprolinase deficiency) is a result of a defect in the gamma-glutamyl cycle due to either 5-oxoprolinase or glutathione synthetase deficiency. In the case of glutathione synthetase deficiency, the glycine is not incorporated into gamma-glutamylcysteine. In the case of 5-oxoprolinase, however, pyroglutamic acid accumulates. Symptoms include anemia, mental retardation, metabolic acidosis, respiratory distress and urolithiasis.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:49 Last Updated: September 10, 2018 at 15:49 |
PW127181View Pathway |
disease
5-Oxoprolinase DeficiencyHomo sapiens
5-Oxoprolinase deficiency, also called OPLAHD, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of glutathione metabolism caused by a defective 5-oxoprolinase. 5-Oxoprolinase catalyzes the conversion of 5-oxoproline into glutamate which is an important neurotransmitter. This disorder is characterized by a large accumulation of 5-oxoproline in the urine. Symptoms of the disorder include enterocolitis, mental retardation, kidney stone formation, and hypoglycemia. 5-Oxoprolinase deficiency has been reported in approximately 8 people.
|
Creator: Ray Kruger Created On: November 02, 2022 at 18:04 Last Updated: November 02, 2022 at 18:04 |
PW122045View Pathway |
disease
5-Oxoprolinase DeficiencyRattus norvegicus
5-Oxoprolinase deficiency, also called OPLAHD, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of glutathione metabolism caused by a defective 5-oxoprolinase. 5-Oxoprolinase catalyzes the conversion of 5-oxoproline into glutamate which is an important neurotransmitter. This disorder is characterized by a large accumulation of 5-oxoproline in the urine. Symptoms of the disorder include enterocolitis, mental retardation, kidney stone formation, and hypoglycemia. 5-Oxoprolinase deficiency has been reported in approximately 8 people.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:51 Last Updated: September 10, 2018 at 15:51 |
PW121821View Pathway |
disease
5-Oxoprolinase DeficiencyMus musculus
5-Oxoprolinase deficiency, also called OPLAHD, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of glutathione metabolism caused by a defective 5-oxoprolinase. 5-Oxoprolinase catalyzes the conversion of 5-oxoproline into glutamate which is an important neurotransmitter. This disorder is characterized by a large accumulation of 5-oxoproline in the urine. Symptoms of the disorder include enterocolitis, mental retardation, kidney stone formation, and hypoglycemia. 5-Oxoprolinase deficiency has been reported in approximately 8 people.
|
Creator: Ana Marcu Created On: September 10, 2018 at 15:49 Last Updated: September 10, 2018 at 15:49 |
PW000476View Pathway |
disease
5-Oxoprolinase DeficiencyHomo sapiens
5-Oxoprolinase deficiency, also called OPLAHD, is a rare inborn error of metabolism (IEM) and autosomal recessive disorder of glutathione metabolism caused by a defective 5-oxoprolinase. 5-Oxoprolinase catalyzes the conversion of 5-oxoproline into glutamate which is an important neurotransmitter. This disorder is characterized by a large accumulation of 5-oxoproline in the urine. Symptoms of the disorder include enterocolitis, mental retardation, kidney stone formation, and hypoglycemia. 5-Oxoprolinase deficiency has been reported in approximately 8 people.
|
Creator: WishartLab Created On: August 29, 2013 at 10:38 Last Updated: August 29, 2013 at 10:38 |
PW147030View Pathway |
5-Hydroxy-L-tryptophan Drug Metabolism PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 10, 2023 at 13:41 Last Updated: October 10, 2023 at 13:41 |
PW125952View Pathway |
5-Deoxystrigol BiosynthesisCannabis sativa
5-Deoxystrigol Biosynthesis is a pathway that has not yet become fully elucidated. Beginning in the chloroplast and potentially finishing in the cytosol, the pathway follows the synthesis of 5-deoxystrigol from beta-carotene. 5-Deoxystrigol is a strigolactone, a plant hormone that stimulates the branching and growth of symbiotic arbuscular mycorrhizal fungi and inhibits plant shoot branching. Strigolactones share a common C19 structure composed of a tricyclic lactone (A, B, and C rings) connected to a second lactone (D ring) by an enol ether bridge. 5-deoxystrigol is the precursor of other beta-oriented C-ring strigolactones (strigol-configured strigolactones) (PMID: 25425668). First, beta-carotene isomerase catalyzes the conversion of beta-carotene into 9-cis-beta-carotene with the help of an iron cofactor. Second, 9-cis-beta-carotene 9',10'-cleavage dioxygenase converts 9-cis-beta-carotene and oxygen to 9-cis-10'-apo-beta-carotenal and beta-ionone with the help of an Fe2+ cofactor. Third, carlactone synthase converts 9-cis-10'-apo-beta-carotenal and oxygen to carlactone and (2E,4E,6E)-7-hydroxy-4-methylhepta-2,4,6-trienal with the help of an Fe2+ cofactor. The final two reactions are not completely understood and may occur in the cytosol. Cytochrome P450 monooxygenase is theorized to catalyze the fourth reaction whereby carlactone is conveted into carlactone carboxylate. It requires heme as a cofactor. This same enzyme could possibly also catalyze the fifth reaction in which 5-deoxystrigol is made.
|
Creator: Eponine Oler Created On: May 04, 2021 at 12:43 Last Updated: May 04, 2021 at 12:43 |
PW012878View Pathway |
5-Deoxystrigol BiosynthesisArabidopsis thaliana
5-Deoxystrigol Biosynthesis is a pathway that has not yet become fully elucidated. Beginning in the chloroplast and potentially finishing in the cytosol, the pathway follows the synthesis of 5-deoxystrigol from beta-carotene. 5-Deoxystrigol is a strigolactone, a plant hormone that stimulates the branching and growth of symbiotic arbuscular mycorrhizal fungi and inhibits plant shoot branching. Strigolactones share a common C19 structure composed of a tricyclic lactone (A, B, and C rings) connected to a second lactone (D ring) by an enol ether bridge. 5-deoxystrigol is the precursor of other beta-oriented C-ring strigolactones (strigol-configured strigolactones) (PMID: 25425668). First, beta-carotene isomerase catalyzes the conversion of beta-carotene into 9-cis-beta-carotene with the help of an iron cofactor. Second, 9-cis-beta-carotene 9',10'-cleavage dioxygenase converts 9-cis-beta-carotene and oxygen to 9-cis-10'-apo-beta-carotenal and beta-ionone with the help of an Fe2+ cofactor. Third, carlactone synthase converts 9-cis-10'-apo-beta-carotenal and oxygen to carlactone and (2E,4E,6E)-7-hydroxy-4-methylhepta-2,4,6-trienal with the help of an Fe2+ cofactor. The final two reactions are not completely understood and may occur in the cytosol. Cytochrome P450 monooxygenase is theorized to catalyze the fourth reaction whereby carlactone is conveted into carlactone carboxylate. It requires heme as a cofactor. This same enzyme could possibly also catalyze the fifth reaction in which 5-deoxystrigol is made.
|
Creator: Carin Li Created On: February 08, 2017 at 12:54 Last Updated: February 08, 2017 at 12:54 |