PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW144993View Pathway |
drug action
Sulfapyridine Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 14:53 Last Updated: October 07, 2023 at 14:53 |
PW127695View Pathway |
drug action
Sulfasalazine Action PathwayHomo sapiens
Sulfasalazine is a salicylate anti-inflammatory drug used to treat Crohn's disease, severe ulcerative colitis, and rheumatoid arthritis. This drug is metabolized by intestinal bacteria to mesalazine and sulfapyridine, these two compounds carry out the main pharmacological activity of sulfasalazine. The mode of action of sulfasalazine or its metabolites, 5-aminosalicylic acid, and sulfapyridine, is still under investigation but may be related to the anti-inflammatory and/or immunomodulatory properties that have been observed in animals. Sulfasalazine and its metabolites have been shown to inhibit leukotrienes and prostaglandins by blocking the cyclo-oxygenase and lipoxygenase pathways. The enzymes that were investigated include phospholipase A2, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX2), and arachidonate 5-lipoxygenase. The cyclooxygenase pathway begins in the cytosol with phospholipids being converted into arachidonic acid by the action of phospholipase A2. The rest of the pathway occurs on the endoplasmic reticulum membrane, where prostaglandin G/H synthase 1 & 2 convert arachidonic acid into prostaglandin H2. Prostaglandin H2 can either be converted into thromboxane A2 via thromboxane A synthase, prostacyclin/prostaglandin I2 via prostacyclin synthase, or prostaglandin E2 via prostaglandin E synthase. COX-2 is an inducible enzyme, and during inflammation, it is responsible for prostaglandin synthesis. It leads to the formation of prostaglandin E2 which is responsible for contributing to the inflammatory response by activating immune cells and for increasing pain sensation by acting on pain. Mesalazine inhibits the action of COX-1 and COX-2 on the endoplasmic reticulum membrane. This reduces the formation of prostaglandin H2 and therefore, prostaglandin E2 (PGE2). The low concentration of prostaglandin E2 attenuates the effect it has on stimulating immune cells and pain fibers, consequently reducing inflammation and pain. Fever is triggered by inflammatory and infectious diseases. Cytokines are produced in the central nervous system (CNS) during an inflammatory response. These cytokines induce COX-2 production that increases the synthesis of prostaglandin, specifically prostaglandin E2 which adjusts hypothalamic temperature control by increasing heat production. Because mesalazine decreases PGE2 in the CNS, it has an antipyretic effect. Antipyretic effects results in increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibitory activities on other non-arachidonic acid derivatives have also been observed, including PPAR gamma, NF-Kb, and IkappaB kinases alpha and beta.
|
Creator: Daphnee Created On: May 23, 2023 at 14:23 Last Updated: May 23, 2023 at 14:23 |
PW144902View Pathway |
drug action
Sulfasalazine Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 14:40 Last Updated: October 07, 2023 at 14:40 |
PW088408View Pathway |
Sulfate/Sulfite MetabolismDrosophila melanogaster
This pathway illustrates the conversion of sulfite to sulfate (via sulfate oxidase) and subsequent generation of adenylylsulfate (APS) via 3'-phosphoadenosine 5'-phosphosulfate synthase 2. APS is converted to phosphoadenylyl-sulfate (PAPS) via adenylylsulfate kinase. APS can also be regenerated from PAPS by 3'(2'), 5'-bisphosphate nucleotidase 1. PAPS is eventually converted to adenosine bisophosphate (PAP) through the action of several different enzymes including aryl sulfotransferase, chondroitin 4-sulfotransferase 13 and estrone sulfotransferase.
The metabolism pathway in question is important for many reasons. Recall, that the sulfite ion is in fact the conjugate base of sulfurous acid. Moreover, this ion is found naturally in one of the worlds most popular beverages, wines. Beyond its natural occurence, sulfite ion had the property of stopping fermentation. As such, the addition of it to products such as wine can be used either as a preservative or to stop the fermentation process at a moment which is of interest. Finally, this preservation property goes beyond merely wines, and finds utility in dried fruits, potatoes, etc.
|
Creator: Ana Marcu Created On: August 10, 2018 at 15:50 Last Updated: August 10, 2018 at 15:50 |
PW088330View Pathway |
Sulfate/Sulfite MetabolismRattus norvegicus
This pathway illustrates the conversion of sulfite to sulfate (via sulfate oxidase) and subsequent generation of adenylylsulfate (APS) via 3'-phosphoadenosine 5'-phosphosulfate synthase 2. APS is converted to phosphoadenylyl-sulfate (PAPS) via adenylylsulfate kinase. APS can also be regenerated from PAPS by 3'(2'), 5'-bisphosphate nucleotidase 1. PAPS is eventually converted to adenosine bisophosphate (PAP) through the action of several different enzymes including aryl sulfotransferase, chondroitin 4-sulfotransferase 13 and estrone sulfotransferase.
The metabolism pathway in question is important for many reasons. Recall, that the sulfite ion is in fact the conjugate base of sulfurous acid. Moreover, this ion is found naturally in one of the worlds most popular beverages, wines. Beyond its natural occurence, sulfite ion had the property of stopping fermentation. As such, the addition of it to products such as wine can be used either as a preservative or to stop the fermentation process at a moment which is of interest. Finally, this preservation property goes beyond merely wines, and finds utility in dried fruits, potatoes, etc.
|
Creator: Ana Marcu Created On: August 10, 2018 at 13:48 Last Updated: August 10, 2018 at 13:48 |
PW064672View Pathway |
Sulfate/Sulfite MetabolismMus musculus
This pathway illustrates the conversion of sulfite to sulfate (via sulfate oxidase) and subsequent generation of adenylylsulfate (APS) via 3'-phosphoadenosine 5'-phosphosulfate synthase 2. APS is converted to phosphoadenylyl-sulfate (PAPS) via adenylylsulfate kinase. APS can also be regenerated from PAPS by 3'(2'), 5'-bisphosphate nucleotidase 1. PAPS is eventually converted to adenosine bisophosphate (PAP) through the action of several different enzymes including aryl sulfotransferase, chondroitin 4-sulfotransferase 13 and estrone sulfotransferase.
The metabolism pathway in question is important for many reasons. Recall, that the sulfite ion is in fact the conjugate base of sulfurous acid. Moreover, this ion is found naturally in one of the worlds most popular beverages, wines. Beyond its natural occurence, sulfite ion had the property of stopping fermentation. As such, the addition of it to products such as wine can be used either as a preservative or to stop the fermentation process at a moment which is of interest. Finally, this preservation property goes beyond merely wines, and finds utility in dried fruits, potatoes, etc.
|
Creator: Carin Li Created On: January 22, 2018 at 00:31 Last Updated: January 22, 2018 at 00:31 |
PW088235View Pathway |
Sulfate/Sulfite MetabolismBos taurus
This pathway illustrates the conversion of sulfite to sulfate (via sulfate oxidase) and subsequent generation of adenylylsulfate (APS) via 3'-phosphoadenosine 5'-phosphosulfate synthase 2. APS is converted to phosphoadenylyl-sulfate (PAPS) via adenylylsulfate kinase. APS can also be regenerated from PAPS by 3'(2'), 5'-bisphosphate nucleotidase 1. PAPS is eventually converted to adenosine bisophosphate (PAP) through the action of several different enzymes including aryl sulfotransferase, chondroitin 4-sulfotransferase 13 and estrone sulfotransferase.
The metabolism pathway in question is important for many reasons. Recall, that the sulfite ion is in fact the conjugate base of sulfurous acid. Moreover, this ion is found naturally in one of the worlds most popular beverages, wines. Beyond its natural occurence, sulfite ion had the property of stopping fermentation. As such, the addition of it to products such as wine can be used either as a preservative or to stop the fermentation process at a moment which is of interest. Finally, this preservation property goes beyond merely wines, and finds utility in dried fruits, potatoes, etc.
|
Creator: Ana Marcu Created On: August 10, 2018 at 11:31 Last Updated: August 10, 2018 at 11:31 |
PW088463View Pathway |
Sulfate/Sulfite MetabolismCaenorhabditis elegans
This pathway illustrates the conversion of sulfite to sulfate (via sulfate oxidase) and subsequent generation of adenylylsulfate (APS) via 3'-phosphoadenosine 5'-phosphosulfate synthase 2. APS is converted to phosphoadenylyl-sulfate (PAPS) via adenylylsulfate kinase. APS can also be regenerated from PAPS by 3'(2'), 5'-bisphosphate nucleotidase 1. PAPS is eventually converted to adenosine bisophosphate (PAP) through the action of several different enzymes including aryl sulfotransferase, chondroitin 4-sulfotransferase 13 and estrone sulfotransferase.
The metabolism pathway in question is important for many reasons. Recall, that the sulfite ion is in fact the conjugate base of sulfurous acid. Moreover, this ion is found naturally in one of the worlds most popular beverages, wines. Beyond its natural occurence, sulfite ion had the property of stopping fermentation. As such, the addition of it to products such as wine can be used either as a preservative or to stop the fermentation process at a moment which is of interest. Finally, this preservation property goes beyond merely wines, and finds utility in dried fruits, potatoes, etc.
|
Creator: Ana Marcu Created On: August 10, 2018 at 17:08 Last Updated: August 10, 2018 at 17:08 |
PW000040View Pathway |
Sulfate/Sulfite MetabolismHomo sapiens
This pathway illustrates the conversion of sulfite to sulfate (via sulfate oxidase) and subsequent generation of adenylylsulfate (APS) via 3'-phosphoadenosine 5'-phosphosulfate synthase 2. APS is converted to phosphoadenylyl-sulfate (PAPS) via adenylylsulfate kinase. APS can also be regenerated from PAPS by 3'(2'), 5'-bisphosphate nucleotidase 1. PAPS is eventually converted to adenosine bisophosphate (PAP) through the action of several different enzymes including aryl sulfotransferase, chondroitin 4-sulfotransferase 13 and estrone sulfotransferase.
The metabolism pathway in question is important for many reasons. Recall, that the sulfite ion is in fact the conjugate base of sulfurous acid. Moreover, this ion is found naturally in one of the worlds most popular beverages, wines. Beyond its natural occurence, sulfite ion had the property of stopping fermentation. As such, the addition of it to products such as wine can be used either as a preservative or to stop the fermentation process at a moment which is of interest. Finally, this preservation property goes beyond merely wines, and finds utility in dried fruits, potatoes, etc.
|
Creator: WishartLab Created On: August 01, 2013 at 13:54 Last Updated: August 01, 2013 at 13:54 |
PW128474View Pathway |
drug action
Sulfathiazole Action PathwayEscherichia coli (strain K12)
Sulfathiazole is a short-acting antibiotic from the sulfonamide drug class. This drug is mostly used with cattle because less toxic alternatives were discovered for humans. Except for vaginal use (vaginal cream), the FDA withdrew the approval of sulfathiazole products. This drug is active against a wide range of gram-positive and gram-negative bacteria. It was used for bacterial enteritis, bacterial pneumonia, ear infections, eye infections, skin ulcers, urinary tract infections, and many others. Sulfathiazole is an inhibitor of dihydropteroate synthase. This inhibition results in the inability of the bacteria to produce folic acid, thus the growth of the bacteria is inhibited (bacteriostatic).
|
Creator: Daphnee Created On: August 30, 2023 at 11:30 Last Updated: August 30, 2023 at 11:30 |