Loader

Pathways

PathWhiz ID Pathway Meta Data

PW063843

Pw063843 View Pathway
drug action

Pimethixene H1-Antihistamine Action

Homo sapiens
Pimethixene is a thioxanthene H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.

PW145190

Pw145190 View Pathway
drug action

Pimozide Drug Metabolism Action Pathway

Homo sapiens

PW128131

Pw128131 View Pathway
drug action

Pimozide Mechanism of Action Action Pathway

Homo sapiens
Pimozide is a member of the class of benzimidazoles that is 1,3-dihydro-2H-benzimidazol-2-one in which one of the nitrogens is substituted by a piperidin-4-yl group, which in turn is substituted on the nitrogen by a 4,4-bis(p-fluorophenyl)butyl group. It has a role as a H1-receptor antagonist, a serotonergic antagonist, a first generation antipsychotic, an antidyskinesia agent and a dopaminergic antagonist. It is a member of benzimidazoles, an organofluorine compound and a heteroarylpiperidine.Pimozide is an orally active antipsychotic drug product which shares with other antipsychotics the ability to blockade dopaminergic receptors on neurons in the central nervous system. The ability of pimozide to suppress motor and phonic tics in Tourette's Disorder is thought to be primarily a function of its dopaminergic blocking activity. Pimozide binds and inhibits the dopamine D2 receptor in the CNS.

PW176117

Pw176117 View Pathway
metabolic

Pimozide Predicted Metabolism Pathway new

Homo sapiens
Metabolites of Pimozide are predicted with biotransformer.

PW132334

Pw132334 View Pathway
metabolic

Pinacidil Drug Metabolism

Homo sapiens
Pinacidil is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Pinacidil passes through the liver and is then excreted from the body mainly through the kidney.

PW145773

Pw145773 View Pathway
drug action

Pinacidil Drug Metabolism Action Pathway

Homo sapiens

PW127929

Pw127929 View Pathway
drug action

Pinaverium Action Pathway

Homo sapiens
Pinaverium is a spasmolytic agent used for the symptomatic treatment of irritable bowel syndrome (IBS) and functional disorders of the biliary tract. It can be found under the brand name Dicetel. Pinaverium is a spasmolytic agent used for functional gastrointestinal disorders. It is a quaternary ammonium compound that acts as an atypical calcium antagonist to restore normal bowel function. It is shown to relieve GI spasm and pain, transit disturbances and other symptoms related to motility disorders and may be considered as effective first-lline therapy for patients with irritable bowel syndrome (IBS). Pinaverium bromide is the common ingredient in formulations, mostly as oral tablets. Pinaverium is a selective and specific voltage-dependent calcium channel blocker located on intestinal smooth muscle cells to inhibit calcium influx. It mediates various effects on the GI tract: it causes oesophageal, gastric and duodenal relaxation, relaxes the colon and intestines, inhibits colonic motility in response to food, hormonal or pharmacological stimuli, accelerates gastric emptying, and reduces contractions of the gallbladder and phasic contractions of sphincter of Oddi. Pinaverium interacts with the 1,4-dihydropyridine binding sites on voltage dependent L-type calcium channels located on GI smooth muscle cells in a competitve manner. The binding site is located in the alpha 1S subunit and pinaverium most likely antagonizes the action of calcium ions by stabilizing a non-conducting channel state. Pinaverium inhibits smooth muscle contractions of the GI tract by inhibiting inward calcium current and calcium influx. It is suggested that pinaverium may be able to bind to both closed or inactivates states of the calcium channel with similar affinity. Pinaverium is administered as an oral tablet. Possible side effects of using pinaverium may include stomach pain, heartburn, dry mouth, and headache.

PW132560

Pw132560 View Pathway
metabolic

Pinaverium Drug Metabolism

Homo sapiens
Pinaverium is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Pinaverium passes through the liver and is then excreted from the body mainly through the kidney.

PW145970

Pw145970 View Pathway
drug action

Pinaverium Drug Metabolism Action Pathway

Homo sapiens

PW000374

Pw000374 View Pathway
drug action

Pindolol Action Pathway

Homo sapiens
Pindolol (also known as Visken) a beta blocker (non-selective) that block beta-1 adrenergic receptor in heart. Blocking beta-1 adrenergic receptor could prevent the binding of epinephrine and norepinephrine, which could efficiently reduce blood pressure and heart rate. In the juxtaglomerular apparatus, pindolol can also bind to beta-2 receptors to prevent the production and release of renin (also known as angiotensinogenase). Without renin, angiotensin II and aldosterone could not be produced, which ultimately prevent water retention and vasoconstriction.