Loader

Pathways

PathWhiz ID Pathway Meta Data

PW340936

Pw340936 View Pathway
metabolic

Ribose Degradation

Citrobacter amalonaticus Y19
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW340900

Pw340900 View Pathway
metabolic

Ribose Degradation

Campylobacter upsaliensis JV21
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW341035

Pw341035 View Pathway
metabolic

Ribose Degradation

Acinetobacter johnsonii SH046
Escherichia coli can utilize the monosaccharide D-ribose as the sole source of carbon and energy for the cell. A high-affinity ABC transport system transports D-ribose into the cell as unphosphorylated beta-D-ribopyranose. Ribose pyranase converts between the furanose and pyranose forms of beta-D-ribose. D-ribofuranose converts between the alpha and beta anomers quickly and spontaneously. Ribokinase converts D-ribose to the pentose phosphate pathway intermediate, D-ribose 5-phosphate, which can enter the central metabolism pathways to meet the cells needs.

PW127219

Pw127219 View Pathway
disease

Ribose-5-phosphate Isomerase Deficiency

Homo sapiens
Ribose-5-phosphate isomerase (RPI) deficiency, is a genetic disorder caused by mutations in the RPIA gene that codes for RPI. RPI is an enzyme that is involved in the pentose phosphate pathway as part of carbohydrate degradation. It reversibly converts D-ribulose 5-phosphate into D-ribose 5-phosphate. In the case of this disorder, RPI functions partially in tissues, because if the gene was simply non-functional, it would likely be lethal. This means that a specific type of mutation needs to occur for this disorder to occur, leading to it being the rarest disease in the world, with only three confirmed cases. In the first known case, the patient had one allele containing a frameshift mutation, which led to a truncated protein, while the other allele contained a missense mutation. This combination meant that activity of RPI was found to vary across tissues and cell types. Characteristics of the RPI deficiency include higher ribitol and arabitol levels in a metabolic profile, as well as differences in polyol profiles. There are other symptoms, including leukoencephalopathy and neuropathy, which may be caused by a toxic accumulation of ribitol and arabitol, or a potential lack of ribose-5-phosphate in RNA synthesis.

PW122064

Pw122064 View Pathway
disease

Ribose-5-phosphate Isomerase Deficiency

Rattus norvegicus
Ribose-5-phosphate isomerase (RPI) deficiency, is a genetic disorder caused by mutations in the RPIA gene that codes for RPI. RPI is an enzyme that is involved in the pentose phosphate pathway as part of carbohydrate degradation. It reversibly converts D-ribulose 5-phosphate into D-ribose 5-phosphate. In the case of this disorder, RPI functions partially in tissues, because if the gene was simply non-functional, it would likely be lethal. This means that a specific type of mutation needs to occur for this disorder to occur, leading to it being the rarest disease in the world, with only three confirmed cases. In the first known case, the patient had one allele containing a frameshift mutation, which led to a truncated protein, while the other allele contained a missense mutation. This combination meant that activity of RPI was found to vary across tissues and cell types. Characteristics of the RPI deficiency include higher ribitol and arabitol levels in a metabolic profile, as well as differences in polyol profiles. There are other symptoms, including leukoencephalopathy and neuropathy, which may be caused by a toxic accumulation of ribitol and arabitol, or a potential lack of ribose-5-phosphate in RNA synthesis.

PW121840

Pw121840 View Pathway
disease

Ribose-5-phosphate Isomerase Deficiency

Mus musculus
Ribose-5-phosphate isomerase (RPI) deficiency, is a genetic disorder caused by mutations in the RPIA gene that codes for RPI. RPI is an enzyme that is involved in the pentose phosphate pathway as part of carbohydrate degradation. It reversibly converts D-ribulose 5-phosphate into D-ribose 5-phosphate. In the case of this disorder, RPI functions partially in tissues, because if the gene was simply non-functional, it would likely be lethal. This means that a specific type of mutation needs to occur for this disorder to occur, leading to it being the rarest disease in the world, with only three confirmed cases. In the first known case, the patient had one allele containing a frameshift mutation, which led to a truncated protein, while the other allele contained a missense mutation. This combination meant that activity of RPI was found to vary across tissues and cell types. Characteristics of the RPI deficiency include higher ribitol and arabitol levels in a metabolic profile, as well as differences in polyol profiles. There are other symptoms, including leukoencephalopathy and neuropathy, which may be caused by a toxic accumulation of ribitol and arabitol, or a potential lack of ribose-5-phosphate in RNA synthesis.

PW000495

Pw000495 View Pathway
disease

Ribose-5-phosphate Isomerase Deficiency

Homo sapiens
Ribose-5-phosphate isomerase (RPI) deficiency, is a genetic disorder caused by mutations in the RPIA gene that codes for RPI. RPI is an enzyme that is involved in the pentose phosphate pathway as part of carbohydrate degradation. It reversibly converts D-ribulose 5-phosphate into D-ribose 5-phosphate. In the case of this disorder, RPI functions partially in tissues, because if the gene was simply non-functional, it would likely be lethal. This means that a specific type of mutation needs to occur for this disorder to occur, leading to it being the rarest disease in the world, with only three confirmed cases. In the first known case, the patient had one allele containing a frameshift mutation, which led to a truncated protein, while the other allele contained a missense mutation. This combination meant that activity of RPI was found to vary across tissues and cell types. Characteristics of the RPI deficiency include higher ribitol and arabitol levels in a metabolic profile, as well as differences in polyol profiles. There are other symptoms, including leukoencephalopathy and neuropathy, which may be caused by a toxic accumulation of ribitol and arabitol, or a potential lack of ribose-5-phosphate in RNA synthesis.

PW127878

Pw127878 View Pathway
drug action

Ribostamycin Action Pathway

Homo sapiens
Ribostamycin is a broad-spectrum antibiotic on the list of WHO critical antimicrobials for human medicine. This drug is in the aminoglycosides antibiotic family. This is isolated from the bacteria called Streptomyces ribosidificus. Ribostamycin works by binding to the bacterial 30S ribosomal subunit, inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA. With this binding, the bacteria are unable to synthesize vital proteins for its growth. However, their exact mechanism of action is not fully known.

PW145536

Pw145536 View Pathway
drug action

Ribostamycin Drug Metabolism Action Pathway

Homo sapiens

PW124263

Pw124263 View Pathway
protein

Rice

Oryza sativa subsp. japonica