Loader

Pathways

PathWhiz ID Pathway Meta Data

PW122577

Pw122577 View Pathway
metabolic

TCA Cycle

Pseudomonas aeruginosa
The citric acid cycle (also named tricarboxylic acid (TCA) cycle or the Krebs cycle), is a collection of 9 enzyme-catalyzed chemical reactions that occur in all living cells undergoing aerobic respiration. The citric acid cycle itself was officially identified in 1937 by Hans Adolf Krebs, who received the Nobel Prize for this discovery in 1953. In eukaryotes, the citric acid cycle occurs in the mitochondria. In prokaryotes, the TCA cycle occurs in the cytoplasm. The TCA cycle starts with acetyl-CoA, which is the “fuel” for the entire cycle. This important molecule comes from the breakdown of glycogen (a stored form of glucose), fats, and many amino acids. At beginning, acetyl-CoA first transfers its 2-carbon acetyl group to the 4-carbon acceptor compound called oxaloacetate to form the 6-carbon compound (citrate) for which the cycle is named. The resulting citrate will have numbers of chemical transformations, whereby it loses one carboxyl group (leading to the 5-carbon compound called alpha-ketoglutarate) and then a second carboxyl group (leading to the 4-carbon compound called succinate). Succinate molecule is further oxidized to fumarate, then malate and finally oxaloacetate. The regeneration of the 4-carbon oxaloacetate, allows the TCA cycle to continue. Oxidation step generates energy that is transferring energy-rich electrons for NAD+ to form NADH in TCA cycle. Each acetyl group will generate 3 NADH in TCA cycle.

PW002377

Pw002377 View Pathway
metabolic

TCA Cycle

Saccharomyces cerevisiae
Citric acid cycle (also known as tricarboxylic acid cycle (TCA) and Krebs cycle) contains series of reactions that involved enzyme catalyzation which are essential for all living cells that require oxygen for cellular respiration. In mitochondria (for eukaryotes), TCA cycle begins with acetyl-CoA and oxaloacetic acid (oxaloacetate) be catalyzed to form citric acid (citrate) by citrate synthase 3. Then, 3-isopropylmalate dehydratase with cofactor 4Fe-4S can catalyze citrate to form cis-aconitic acid as the intermediate compound and catalyze cis-aconitic acid to form isocitric acid. Many TCA cycle intermediates are the precursors for other molecules' synthesis; and NADH (from NAD+) is the major energy that is produced by oxidative steps of the TCA cycle.

PW122301

Pw122301 View Pathway
metabolic

TCA Cycle

Mus musculus

PW270586

Pw270586 View Pathway
metabolic

TCA Cycle

Pseudomonas putida
The citric acid cycle (also named tricarboxylic acid (TCA) cycle or the Krebs cycle), is a collection of 9 enzyme-catalyzed chemical reactions that occur in all living cells undergoing aerobic respiration. The citric acid cycle itself was officially identified in 1937 by Hans Adolf Krebs, who received the Nobel Prize for this discovery in 1953. In eukaryotes, the citric acid cycle occurs in the mitochondria. In prokaryotes, the TCA cycle occurs in the cytoplasm. The TCA cycle starts with acetyl-CoA, which is the “fuel” for the entire cycle. This important molecule comes from the breakdown of glycogen (a stored form of glucose), fats, and many amino acids. At beginning, acetyl-CoA first transfers its 2-carbon acetyl group to the 4-carbon acceptor compound called oxaloacetate to form the 6-carbon compound (citrate) for which the cycle is named. The resulting citrate will have numbers of chemical transformations, whereby it loses one carboxyl group (leading to the 5-carbon compound called alpha-ketoglutarate) and then a second carboxyl group (leading to the 4-carbon compound called succinate). Succinate molecule is further oxidized to fumarate, then malate and finally oxaloacetate. The regeneration of the 4-carbon oxaloacetate, allows the TCA cycle to continue. Oxidation step generates energy that is transferring energy-rich electrons for NAD+ to form NADH in TCA cycle. Each acetyl group will generate 3 NADH in TCA cycle.

PW270365

Pw270365 View Pathway
metabolic

TCA Cycle

Pseudoxanthomonas spadix
The citric acid cycle (also named tricarboxylic acid (TCA) cycle or the Krebs cycle), is a collection of 9 enzyme-catalyzed chemical reactions that occur in all living cells undergoing aerobic respiration. The citric acid cycle itself was officially identified in 1937 by Hans Adolf Krebs, who received the Nobel Prize for this discovery in 1953. In eukaryotes, the citric acid cycle occurs in the mitochondria. In prokaryotes, the TCA cycle occurs in the cytoplasm. The TCA cycle starts with acetyl-CoA, which is the “fuel” for the entire cycle. This important molecule comes from the breakdown of glycogen (a stored form of glucose), fats, and many amino acids. At beginning, acetyl-CoA first transfers its 2-carbon acetyl group to the 4-carbon acceptor compound called oxaloacetate to form the 6-carbon compound (citrate) for which the cycle is named. The resulting citrate will have numbers of chemical transformations, whereby it loses one carboxyl group (leading to the 5-carbon compound called alpha-ketoglutarate) and then a second carboxyl group (leading to the 4-carbon compound called succinate). Succinate molecule is further oxidized to fumarate, then malate and finally oxaloacetate. The regeneration of the 4-carbon oxaloacetate, allows the TCA cycle to continue. Oxidation step generates energy that is transferring energy-rich electrons for NAD+ to form NADH in TCA cycle. Each acetyl group will generate 3 NADH in TCA cycle.

PW124079

Pw124079 View Pathway
metabolic

TCA Cycle

Meloidogyne incognita

PW002766

Pw002766 View Pathway
metabolic

TCA cycle

Arabidopsis thaliana
The TCA pathway, also known as the citric acid cycle is a catabolic pathway of aerobic respiration. This pathway generates energy in the cell. The cycle can start from Acetyl-CoA interacting with Oxalacetic acid and water through a citrate synthase monomer resulting in a hydrogen ion, CoA and a Citric Acid. The latter compound is dehydrated by a Citrate hydro-lyase resulting in the release of water and a cis-Aconitic acid. This compound is then hydrated through a Citrate hydro-lyase resulting in a D-threo-Isocitric acid. This compound is decarboxylated by an NADP dependent Citrate dehydrogenase, resulting in a release of carbon dioxide and NADPH and Oxoglutaric acid. The oxoglutaric acid interacts with a Coenzyme A through a NAD driven 2-oxoglutarate dehydrogenase resulting in a release of carbon dioxide, an NADH and succinyl-CoA. The succinyl-CoA interacts with a phosphate and an ADP through a 2-oxoglutarate dehydrogenase resulting in a CoA, an ATP and Succinic Acid. Succinic acid interacts with a ubiquinone, in this case a ubiquinone 1 through a succinate:quinone oxidoreductase resulting in an ubiquinol, in this case a ubiquinol-1 and a fumaric acid. The fumaric acid interacts with water through a fumarase hydratase resulting in a L-Malic acid.This compound can either interact with quinone through a malate:quinone oxidoreductase resulting in a release of hydroquinone and oxalacetic acid, or it can react with an NAD through a malate dehydrogenase resulting in a hydrogen ion, NADH and Oxalacetic acid.

PW273236

Pw273236 View Pathway
metabolic

TCA Cycle

Streptomyces avermitilis
The citric acid cycle (also named tricarboxylic acid (TCA) cycle or the Krebs cycle), is a collection of 9 enzyme-catalyzed chemical reactions that occur in all living cells undergoing aerobic respiration. The citric acid cycle itself was officially identified in 1937 by Hans Adolf Krebs, who received the Nobel Prize for this discovery in 1953. In eukaryotes, the citric acid cycle occurs in the mitochondria. In prokaryotes, the TCA cycle occurs in the cytoplasm. The TCA cycle starts with acetyl-CoA, which is the “fuel” for the entire cycle. This important molecule comes from the breakdown of glycogen (a stored form of glucose), fats, and many amino acids. At beginning, acetyl-CoA first transfers its 2-carbon acetyl group to the 4-carbon acceptor compound called oxaloacetate to form the 6-carbon compound (citrate) for which the cycle is named. The resulting citrate will have numbers of chemical transformations, whereby it loses one carboxyl group (leading to the 5-carbon compound called alpha-ketoglutarate) and then a second carboxyl group (leading to the 4-carbon compound called succinate). Succinate molecule is further oxidized to fumarate, then malate and finally oxaloacetate. The regeneration of the 4-carbon oxaloacetate, allows the TCA cycle to continue. Oxidation step generates energy that is transferring energy-rich electrons for NAD+ to form NADH in TCA cycle. Each acetyl group will generate 3 NADH in TCA cycle.

PW123817

Pw123817 View Pathway
metabolic

TCA Cycle

Rattus norvegicus

PW126057

Pw126057 View Pathway
metabolic

TCA Cycle

Mycobacterium tuberculosis