
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW000687 |
drug action
Acetaminophen Action PathwayHomo sapiens
Acetaminophen (also named paracetamol or APAP) is not a Nonsteroidal anti-inflammatory drugs (NSAIDs). However, it still can be used to treat pain and fever. Acetaminophen can block prostaglandin synthesis by the action of inhibition of prostaglandin G/H synthase 1 and 2. Prostaglandin G/H synthase 1 and 2 catalyze the arachidonic acid to prostaglandin G2, and also catalyze prostaglandin G2 to prostaglandin H2 in the metabolism pathway. Decreased prostaglandin synthesis in many animal model's cell is caused by presence of acetaminophen.
|
Creator: WishartLab Created On: April 26, 2014 at 15:49 Last Updated: April 26, 2014 at 15:49 |
PW176847 |
drug action
Aceprometazine H1-Antihistamine Immune Response Action PathwayHomo sapiens
Aceprometazine is a is a drug with neuroleptic and anti-histamine properties. Although not widely prescribed, it is used in combination with meprobamate for the treatment of sleep disorders in France under the trade name Mepronizine. Aceprometazine, acting as an H1-receptor antagonist can induce sedation by being able to cross the blood-brain-barrier and binding to H1-receptors in the central nervous system.
H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage.
|
Creator: Carin Li Created On: December 19, 2023 at 15:20 Last Updated: December 19, 2023 at 15:20 |
PW176755 |
drug action
Aceprometazine H1-Antihistamine Blood Vessel Constriction Action PathwayHomo sapiens
Aceprometazine is a is a drug with neuroleptic and anti-histamine properties. Although not widely prescribed, it is used in combination with meprobamate for the treatment of sleep disorders in France under the trade name Mepronizine. Aceprometazine, acting as an H1-receptor antagonist can induce sedation by being able to cross the blood-brain-barrier and binding to H1-receptors in the central nervous system.
|
Creator: Ray Kruger Created On: December 19, 2023 at 14:17 Last Updated: December 19, 2023 at 14:17 |
PW176662 |
drug action
Aceprometazine H1 Antihistamine Smooth Muscle Relaxation Action PathwayHomo sapiens
Aceprometazine is a is a drug with neuroleptic and anti-histamine properties. Although not widely prescribed, it is used in combination with meprobamate for the treatment of sleep disorders in France under the trade name Mepronizine. Aceprometazine, acting as an H1-receptor antagonist can induce sedation by being able to cross the blood-brain-barrier and binding to H1-receptors in the central nervous system.
H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage.
|
Creator: Ray Kruger Created On: December 19, 2023 at 13:11 Last Updated: December 19, 2023 at 13:11 |
PW147104 |
drug action
Aceprometazine H1 Antihistamine Neurological Sleep Action PathwayHomo sapiens
Aceprometazine is an ethanolamine class H1 antihistamine used to treat insomnia and allergy symptoms such as hay fever and hives. It is also used with pyridoxine in the treatment of nausea and vomiting in pregnancy. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria.
Wakefulness is regulated by histamine in the tuberomammillary nucleus, a part of the hypothalamus. Histidine is decarboxylated into histamine in the neuron. Histamine is transported into synaptic vesicles by a monoamine transporter then released into the synapse. Normally histamine would activate the H1 histamine receptor on the post-synaptic neuron in the tuberomammillary nucleus. Aceprometazine inhibits the H1 histamine receptor, preventing the depolarization of the post-synaptic neuron. This prevents the wakefulness signal from being sent to the major areas of the brain, causing sleepiness.
|
Creator: Ray Kruger Created On: October 10, 2023 at 14:48 Last Updated: October 10, 2023 at 14:48 |
PW128177 |
drug action
Acepromazine Dopamine Antagonist Action PathwayHomo sapiens
Acepromazine is a phenothiazine tranquilizer that blocks dopamine receptors in the CNS and depresses the reticular-activating system, resulting in sedation. Acepromazine was first used in humans in the 1950s as an antipsychotic agent. It is now rarely used in humans. Acepromazine is frequently used in animals as a sedative and antiemetic. Its principal value is in quietening and calming anxious animals. Acepromazine acts as an antagonist (blocking agent) on different postsynaptic receptors -on dopaminergic-receptors (subtypes D1, D2, D3 and D4 - different antipsychotic properties on productive and unproductive symptoms), on serotonergic-receptors (5-HT1 and 5-HT2, with anxiolytic, antidepressive and antiaggressive properties as well as an attenuation of extrapyramidal side-effects, but also leading to weight gain, fall in blood pressure, sedation and ejaculation difficulties), on histaminergic-receptors (H1-receptors, sedation, antiemesis, vertigo, fall in blood pressure and weight gain), alpha1/alpha2-receptors (antisympathomimetic properties, lowering of blood pressure, reflex tachycardia, vertigo, sedation, hypersalivation and incontinence as well as sexual dysfunction, but may also attenuate pseudoparkinsonism - controversial) and finally on muscarinic (cholinergic) M1/M2-receptors (causing anticholinergic symptoms like dry mouth, blurred vision, obstipation, difficulty/inability to urinate, sinus tachycardia, ECG-changes and loss of memory, but the anticholinergic action may attenuate extrapyramidal side-effects).
|
Creator: Omolola Created On: July 28, 2023 at 09:50 Last Updated: July 28, 2023 at 09:50 |
PW128188 |
drug action
Acepromazine - Serotonin Antagonist Action PathwayHomo sapiens
Acepromazine is a phenothiazine tranquilizer that blocks dopamine receptors in the CNS and depresses the reticular-activating system, resulting in sedation. Acepromazine was first used in humans in the 1950s as an antipsychotic agent. It is now rarely used in humans. Acepromazine is frequently used in animals as a sedative and antiemetic. Its principal value is in quietening and calming anxious animals. Acepromazine acts as an antagonist (blocking agent) on different postsynaptic receptors -on dopaminergic-receptors (subtypes D1, D2, D3 and D4 - different antipsychotic properties on productive and unproductive symptoms), on serotonergic-receptors (5-HT1 and 5-HT2, with anxiolytic, antidepressive and antiaggressive properties as well as an attenuation of extrapyramidal side-effects, but also leading to weight gain, fall in blood pressure, sedation and ejaculation difficulties), on histaminergic-receptors (H1-receptors, sedation, antiemesis, vertigo, fall in blood pressure and weight gain), alpha1/alpha2-receptors (antisympathomimetic properties, lowering of blood pressure, reflex tachycardia, vertigo, sedation, hypersalivation and incontinence as well as sexual dysfunction, but may also attenuate pseudoparkinsonism - controversial) and finally on muscarinic (cholinergic) M1/M2-receptors (causing anticholinergic symptoms like dry mouth, blurred vision, obstipation, difficulty/inability to urinate, sinus tachycardia, ECG-changes and loss of memory, but the anticholinergic action may attenuate extrapyramidal side-effects).
|
Creator: Omolola Created On: July 31, 2023 at 08:50 Last Updated: July 31, 2023 at 08:50 |
PW176361 |
Acenocoumarol Predicted Metabolism PathwayHomo sapiens
Metabolites of Acenocoumarol are predicted with biotransformer.
|
Creator: Omolola Created On: December 07, 2023 at 15:47 Last Updated: December 07, 2023 at 15:47 |
PW145423 |
drug action
Acenocoumarol Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 15:48 Last Updated: October 07, 2023 at 15:48 |
PW000312 |
drug action
Acenocoumarol Action PathwayHomo sapiens
Acenocoumarol (also known as Nitrowarfarin or Sinthrome) is an anticoagulant that inhibit the liver enzyme vitamin K reductase, which cause Vitamin K1 2,3-epoxide could not be catalyzed by vitamin K reductase to form vitamin KH2, the reduced form of vitamin K. Vitamin K-dependent coagulation factors (II, VII, IX, and X) requires its cofactor, vitamin K to facilitate the activation and gamma-carboxylation. Inhibition of vitamin K reductase results in reduced concentration of vitamin KH2, which will ultimately lead to decreased coagulability of the blood and reduced cleavage of fibrinogen into fibrin.
|
Creator: WishartLab Created On: August 22, 2013 at 10:45 Last Updated: August 22, 2013 at 10:45 |