
PathWhiz ID | Pathway | Meta Data |
---|---|---|
PW125910 |
drug action
Valdecoxib Action Pathway (New)Homo sapiens
Valdecoxib is an oral non-steroidal anti-inflammatory drug given to treat osteoarthritis and dysmenorrhoea. It targets the prostaglandin G/H synthase-2 (COX-2) in the cyclooxygenase pathway. The cyclooxygenase pathway begins in the cytosol with phospholipids being converted into arachidonic acid by the action of phospholipase A2. The rest of the pathway occurs on the endoplasmic reticulum membrane, where prostaglandin G/H synthase 1 & 2 converts arachidonic acid into prostaglandin H2. Prostaglandin H2 can either be converted into thromboxane A2 via thromboxane A synthase, prostacyclin/prostaglandin I2 via prostacyclin synthase or prostaglandin E2 via prostaglandin E synthase. COX-2 is an inducible enzyme, and during inflammation, it is responsible for prostaglandin synthesis. It leads to the formation of prostaglandin E2 which is responsible for contributing to the inflammatory response by activating immune cells and for increasing pain sensation by acting on pain fibers. Valdecoxib enters the cell via the solute carrier family 22-member 8 transporter and inhibits the action of COX-2 on the endoplasmic reticulum membrane. This reduces the formation of prostaglandin H2 and therefore, prostaglandin E2. The low concentration of prostaglandin E2 attenuates the effect it has on stimulating immune cells and pain fibers, consequently reducing inflammation and pain. Side effects of valdecoxib may include diarrhea, nausea, upset stomach, headache, indigestion, stomach cramps, upper respiratory tract infection (nose, throat, or sinuses), back pain, dizziness, gas, muscle pain, rash, and stuffy nose.
|
Creator: Karxena Harford Created On: April 28, 2021 at 13:31 Last Updated: April 28, 2021 at 13:31 |
PW144697 |
drug action
Valdecoxib Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 14:15 Last Updated: October 07, 2023 at 14:15 |
PW176240 |
Valdecoxib Predicted Metabolism PathwayHomo sapiens
Metabolites of Valdecoxib are predicted with biotransformer.
|
Creator: Omolola Created On: December 04, 2023 at 13:07 Last Updated: December 04, 2023 at 13:07 |
PW127470 |
drug action
Valganciclovir Action PathwayHomo sapiens
Valganciclovir is an antiviral medication used to treat cytomegalovirus (CMV) retinitis in patients diagnosed with acquired immunodeficiency syndrome (AIDS). Valganciclovir is a prodrug of ganciclovir. After administration, valganciclovir is rapidly converted to ganciclovir in the intestine or liver by intestinal or hepatic esterases.Ganciclovir is transported into the blood and to the infected cells. It is then converted to the active form by a virus-encoded cellular enzyme, thymidine kinase, which catalyzes phosphorylation of ganciclovir to ganciclovir monophosphate. Ganciclovir monophosphate is converted into the diphosphate by cellular guanylate kinase then into the triphosphate by a number of cellular enzymes. Ganciclovir triphosphate inhibits the activity of DNA polymerase by competing with its substrate dGTP. Ganciclovir triphosphate also gets incorporated into viral DNA, but since it lacks the 3'-OH group which is needed to form the 5′ to 3′ phosphodiester linkage essential for DNA chain elongation, this causes DNA chain termination, preventing the growth of viral DNA. Less Viral DNA is transported into the nucleus, therefore, less viral DNA is integrated into the host DNA. Less viral proteins produced, fewer viruses can form.
|
Creator: Ray Kruger Created On: March 07, 2023 at 09:43 Last Updated: March 07, 2023 at 09:43 |
PW145477 |
drug action
Valganciclovir Drug Metabolism Action PathwayHomo sapiens
|
Creator: Ray Kruger Created On: October 07, 2023 at 15:54 Last Updated: October 07, 2023 at 15:54 |
PW404267 |
Valine BiosynthesisParaprevotella xylaniphila YIT 11841
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven
acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine. L-valine is then transported into the periplasmic space through a L-valine efflux transporter.
|
Creator: Julia Wakoli Created On: December 21, 2024 at 00:12 Last Updated: December 21, 2024 at 00:12 |
PW404104 |
Valine BiosynthesisBacteroides sp. 2_2_4
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven
acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine. L-valine is then transported into the periplasmic space through a L-valine efflux transporter.
|
Creator: Julia Wakoli Created On: December 20, 2024 at 22:58 Last Updated: December 20, 2024 at 22:58 |
PW402305 |
Valine BiosynthesisEscherichia coli (strain SMS-3-5 / SECEC)
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven
acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine. L-valine is then transported into the periplasmic space through a L-valine efflux transporter.
|
Creator: Julia Wakoli Created On: December 20, 2024 at 10:51 Last Updated: December 20, 2024 at 10:51 |
PW684630 |
Valine BiosynthesisBacteroides sp. 1_1_14
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven
acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine. L-valine is then transported into the periplasmic space through a L-valine efflux transporter.
|
Creator: Julia Wakoli Created On: December 20, 2024 at 22:44 Last Updated: December 20, 2024 at 22:44 |
PW402331 |
Valine BiosynthesisEscherichia coli (strain UTI89 / UPEC)
The pathway of valine biosynthesis starts with pyruvic acid interacting with a hydrogen ion through a acetolactate synthase / acetohydroxybutanoate synthase or a acetohydroxybutanoate synthase / acetolactate synthase resulting in the release of carbon dioxide and (S)-2-acetolactate. The latter compound then interacts with a hydrogen ion through an NADPH driven
acetohydroxy acid isomeroreductase resulting in the release of a NADP and an (R) 2,3-dihydroxy-3-methylvalerate. The latter compound is then dehydrated by a dihydroxy acid dehydratase resulting in the release of water and isovaleric acid. Isovaleric acid interacts with an L-glutamic acid through a Valine Transaminase resulting in a oxoglutaric acid and an L-valine. L-valine is then transported into the periplasmic space through a L-valine efflux transporter.
|
Creator: Julia Wakoli Created On: December 20, 2024 at 11:07 Last Updated: December 20, 2024 at 11:07 |