Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Porphyrin Metabolism
Homo sapiens
Metabolic Pathway
Created: 2013-08-19
Last Updated: 2022-11-10
This pathway depicts the synthesis and breakdown of porphyrin. The porphyrin ring is the framework for the heme molecule, the pigment in hemoglobin and red blood cells. The first reaction in porphyrin ring biosynthesis takes place in the mitochondria and involves the condensation of glycine and succinyl-CoA by delta-aminolevulinic acid synthase (ALAS). Delta-aminolevulinic acid (ALA) is also called 5-aminolevulinic acid. Following its synthesis, ALA is transported into the cytosol, where ALA dehydratase (also called porphobilinogen synthase) dimerizes 2 molecules of ALA to produce porphobilinogen. The next step in the pathway involves the condensation of 4 molecules of porphobilinogen to produce hydroxymethylbilane (also known as HMB). The enzyme that catalyzes this condensation is known as porphobilinogen deaminase (PBG deaminase). This enzyme is also called hydroxymethylbilane synthase or uroporphyrinogen I synthase. Hydroxymethylbilane (HMB) has two main fates. Most frequently it is enzymatically converted into uroporphyrinogen III, the next intermediate on the path to heme. This step is mediated by two enzymes: uroporphyrinogen synthase and uroporphyrinogen III cosynthase. Hydroxymethylbilane can also be non-enzymatically cyclized to form uroporphyrinogen I. In the cytosol, the uroporphyrinogens (uroporphyrinogen III or uroporphyrinogen I) are decarboxylated by the enzyme uroporphyrinogen decarboxylase. These new products have methyl groups in place of the original acetate groups and are known as coproporphyrinogens. Coproporphyrinogen III is the most important intermediate in heme synthesis. Coproporphyrinogen III is transported back from the cytosol into the interior of the mitochondria, where two propionate residues are decarboxylated (via coproporphyrinogen-III oxidase), which results in vinyl substituents on the 2 pyrrole rings. The resulting product is called protoporphyrinogen IX. The protoporphyrinogen IX is then converted into protoporphyrin IX by another enzyme called protoporphyrinogen IX oxidase. The final reaction in heme synthesis also takes place within the mitochondria and involves the insertion of the iron atom into the ring system generating the molecule known heme b. The enzyme catalyzing this reaction is known as ferrochelatase. The largest repository of heme in the body is in red blood cells (RBCs). RBCs have a life span of about 120 days. When the RBCs have reached the end of their useful lifespan, the cells are engulfed by macrophages and their constituents recycled or disposed of. Heme is broken down when the heme ring is opened by the enzyme known as heme oxygenase, which is found in the endoplasmic reticulum of the macrophages. The oxidation process produces the linear tetrapyrrole biliverdin, ferric iron (Fe3+), and carbon monoxide (CO). The carbon monoxide (which is toxic) is eventually discharged through the lungs. In the next reaction, a second methylene group (located between rings III and IV of the porphyrin ring) is reduced by the enzyme known as biliverdin reductase, producing bilirubin. Bilirubin is significantly less extensively conjugated than biliverdin. This reduction causes a change in the colour of the molecule from blue-green (biliverdin) to yellow-red (bilirubin). In hepatocytes, bilirubin-UDP-glucuronyltransferase (bilirubin-UGT) adds two additional glucuronic acid molecules to bilirubin to produce the more water-soluble version of the molecule known as bilirubin diglucuronide. In most individuals, intestinal bilirubin is acted on by the gut bacteria to produce the final porphyrin products, urobilinogens and stercobilins. These are excreted in the feces. The stercobilins oxidize to form brownish pigments which lead to the characteristic brown colour found in normal feces. Some of the urobilinogen produced by the gut bacteria is reabsorbed and re-enters the circulation. These urobilinogens are converted into urobilins that are then excreted in the urine which cause the yellowish colour in urine.
References
Porphyrin Metabolism References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Bishop DF: Two different genes encode delta-aminolevulinate synthase in humans: nucleotide sequences of cDNAs for the housekeeping and erythroid genes. Nucleic Acids Res. 1990 Dec 11;18(23):7187-8. doi: 10.1093/nar/18.23.7187.
Pubmed: 2263504
Bawden MJ, Borthwick IA, Healy HM, Morris CP, May BK, Elliott WH: Sequence of human 5-aminolevulinate synthase cDNA. Nucleic Acids Res. 1987 Oct 26;15(20):8563. doi: 10.1093/nar/15.20.8563.
Pubmed: 3671094
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Zhao Y, Wang L, Shen HB, Wang ZX, Wei QY, Chen F: Association between delta-aminolevulinic acid dehydratase (ALAD) polymorphism and blood lead levels: a meta-regression analysis. J Toxicol Environ Health A. 2007 Dec;70(23):1986-94. doi: 10.1080/15287390701550946.
Pubmed: 17966070
Wetmur JG, Kaya AH, Plewinska M, Desnick RJ: Molecular characterization of the human delta-aminolevulinate dehydratase 2 (ALAD2) allele: implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am J Hum Genet. 1991 Oct;49(4):757-63.
Pubmed: 1716854
Wetmur JG, Bishop DF, Cantelmo C, Desnick RJ: Human delta-aminolevulinate dehydratase: nucleotide sequence of a full-length cDNA clone. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7703-7. doi: 10.1073/pnas.83.20.7703.
Pubmed: 3463993
Raich N, Romeo PH, Dubart A, Beaupain D, Cohen-Solal M, Goossens M: Molecular cloning and complete primary sequence of human erythrocyte porphobilinogen deaminase. Nucleic Acids Res. 1986 Aug 11;14(15):5955-68. doi: 10.1093/nar/14.15.5955.
Pubmed: 2875434
Grandchamp B, De Verneuil H, Beaumont C, Chretien S, Walter O, Nordmann Y: Tissue-specific expression of porphobilinogen deaminase. Two isoenzymes from a single gene. Eur J Biochem. 1987 Jan 2;162(1):105-10. doi: 10.1111/j.1432-1033.1987.tb10548.x.
Pubmed: 3816774
Yoo HW, Warner CA, Chen CH, Desnick RJ: Hydroxymethylbilane synthase: complete genomic sequence and amplifiable polymorphisms in the human gene. Genomics. 1993 Jan;15(1):21-9. doi: 10.1006/geno.1993.1005.
Pubmed: 7916736
Tsai SF, Bishop DF, Desnick RJ: Human uroporphyrinogen III synthase: molecular cloning, nucleotide sequence, and expression of a full-length cDNA. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7049-53. doi: 10.1073/pnas.85.19.7049.
Pubmed: 3174619
Aizencang G, Solis C, Bishop DF, Warner C, Desnick RJ: Human uroporphyrinogen-III synthase: genomic organization, alternative promoters, and erythroid-specific expression. Genomics. 2000 Dec 1;70(2):223-31. doi: 10.1006/geno.2000.6373.
Pubmed: 11112350
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Moran-Jimenez MJ, Ged C, Romana M, Enriquez De Salamanca R, Taieb A, Topi G, D'Alessandro L, de Verneuil H: Uroporphyrinogen decarboxylase: complete human gene sequence and molecular study of three families with hepatoerythropoietic porphyria. Am J Hum Genet. 1996 Apr;58(4):712-21.
Pubmed: 8644733
Romeo PH, Raich N, Dubart A, Beaupain D, Pryor M, Kushner J, Cohen-Solal M, Goossens M: Molecular cloning and nucleotide sequence of a complete human uroporphyrinogen decarboxylase cDNA. J Biol Chem. 1986 Jul 25;261(21):9825-31.
Pubmed: 3015909
Delfau-Larue MH, Martasek P, Grandchamp B: Coproporphyrinogen oxidase: gene organization and description of a mutation leading to exon 6 skipping. Hum Mol Genet. 1994 Aug;3(8):1325-30. doi: 10.1093/hmg/3.8.1325.
Pubmed: 7987309
Puy H, Robreau AM, Rosipal R, Nordmann Y, Deybach JC: Protoporphyrinogen oxidase: complete genomic sequence and polymorphisms in the human gene. Biochem Biophys Res Commun. 1996 Sep 4;226(1):226-30. doi: 10.1006/bbrc.1996.1337.
Pubmed: 8806618
Whatley SD, Puy H, Morgan RR, Robreau AM, Roberts AG, Nordmann Y, Elder GH, Deybach JC: Variegate porphyria in Western Europe: identification of PPOX gene mutations in 104 families, extent of allelic heterogeneity, and absence of correlation between phenotype and type of mutation. Am J Hum Genet. 1999 Oct;65(4):984-94. doi: 10.1086/302586.
Pubmed: 10486317
Nishimura K, Taketani S, Inokuchi H: Cloning of a human cDNA for protoporphyrinogen oxidase by complementation in vivo of a hemG mutant of Escherichia coli. J Biol Chem. 1995 Apr 7;270(14):8076-80. doi: 10.1074/jbc.270.14.8076.
Pubmed: 7713909
Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D, Arosio P, Drysdale J: A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem. 2001 Jul 6;276(27):24437-40. doi: 10.1074/jbc.C100141200. Epub 2001 Apr 25.
Pubmed: 11323407
Langlois d'Estaintot B, Santambrogio P, Granier T, Gallois B, Chevalier JM, Precigoux G, Levi S, Arosio P: Crystal structure and biochemical properties of the human mitochondrial ferritin and its mutant Ser144Ala. J Mol Biol. 2004 Jul 2;340(2):277-93. doi: 10.1016/j.jmb.2004.04.036.
Pubmed: 15201052
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings