Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Tyrosine Metabolism
Homo sapiens
Metabolic Pathway
Created: 2013-08-19
Last Updated: 2022-10-27
The tyrosine metabolism pathway describes the many ways in which tyrosine is catabolized or transformed to generate a wide variety of biologically important molecules. In particular, tyrosine can be metabolized to produce hormones such as thyroxine and triiodothyronine or it can be metabolized to produce neurotransmitters such as L-DOPA, dopamine, adrenaline, or noradrenaline. Tyrosine can also serve as a precursor of the pigment melanin and for the formation of Coenzyme Q10. Additionally, tyrosine can be catabolized all the way down into fumarate and acetoacetate. This particular pathway for tyrosine degradation starts with an alpha-ketoglutarate-dependent transamination reaction of tyrosine, which is mediated through the enzyme known as tyrosine transaminase. This process generates p-hydroxyphenylpyruvate. This aromatic acid is then acted upon by p-hydroxylphenylpyruvate-dioxygenase which generates the compound known as homogentisic acid or homogentisate (2,5-dihydroxyphenyl-1-acetate). In order to split the aromatic ring of homogentisate, a unique dioxygenase enzyme known as homogentisic acid 1,2-dioxygenase is required. Through this enzyme, maleylacetoacetate is created from the homogentisic acid precursor. The accumulation of excess homogentisic acid and its oxide (named alkapton) in the urine of afflicted individuals can lead to a condition known as alkaptonuria. This genetic condition, also known as an inborn error of metabolism or IEM, occurs if there are mutations in the homogentisic acid 1,2-dioxygenase gene. After the breakdown of homogentisate is achieved, maleylacetoacetate is then attacked by the enzyme known as maleylacetoacetate-cis-trans-isomerase, which generates fumarylacetate. This isomerase catalyzes the rotation of the carboxyl group created from the hydroxyl group via oxidation. This cis-trans-isomerase uses glutathione as a coenzyme or cofactor. The resulting product, fumarylacetoacetate, is then split into acetoactate and fumarate via the enzyme known as fumarylacetoacetate-hydrolase through the addition of a water molecule. Through this set of reactions fumarate and acetoacetate (3-ketobutyroate) are liberated. Acetoacetate is a ketone body, which is activated with succinyl-CoA, and thereafter it can be converted into acetyl-CoA, which in turn can be oxidized by the citric acid cycle (also known as the TCA cycle) or used for fatty acid synthesis. Other aspects of tyrosine metabolism include the generation of catecholamines. In this process, the enzyme known as tyrosine hydroxylase (or AAAH or TYH) catalyzes the conversion of tyrosine to L-DOPA. The L-DOPA can then be converted via the enzyme DOPA decarboxylase (DDC) to dopamine. Dopamine can then be converted to 3-methoxytyramine via the action of catechol-O-methyltransferase (COMT). Dopamine can also be converted to norepinephrine (noradrenaline) through the action of the enzyme known as dopamine beta hydroxylase (DBH). Norepinephrine can then be converted to epinephrine (adrenaline) through the action of phenyethanolamine N-methyltransferase (PNMT). Catecholamines such as L-DOPA, dopamine and methoxytyramine are produced mainly by the chromaffin cells of the adrenal medulla and by neuronal cells found in the brain. For example, dopamine, which acts as a neurotransmitter, is mostly produced in neuronal cell bodies in the ventral tegmental area and the substantia nigra while epinephrine is produced in neurons in the human brain that express PMNT. Catecholamines typically have a half-life of a few minutes in the blood. They are typically degraded via catechol-O-methyltransferases (COMT) or by deamination via monoamine oxidases (MAO). Another important aspect of tyrosine metabolism includes the production of melanin. Melanin is produced through a mechanism known as melanogenesis, a process that involves the oxidation of tyrosine followed by the polymerization of these oxidation by-products. Melanin pigments are produced in a specialized group of cells known as melanocytes. There are three types of melanin: pheomelanin, eumelanin, and neuromelanin of which eumelanin is the most common. Melanogenesis, especially in the skin, is initiated through the exposure to UV light. Melanin is the primary pigment that determines skin color. Melanin is also found in hair and the pigmented tissue underlying the iris. The first step in the synthesis for both eumelanins and pheomelanins is the conversion of tyrosine to dopaquinone by the enzyme known as tyrosinase. The resulting dopaquinone can combine with cysteine to produce cysteinyldopa, which then polymerizes to form pheomelanin. Dopaquinone can also form lecuodopachrome, which then can be converted to dopachrome (a cyclization product) and this eventually becomes eumelanin. Tyrosine plays a critical role in the synthesis of thyroid hormones. Thyroid hormones are produced and released by the thyroid gland and include triiodothyronine (T3) and thyroxine (T4). These two hormones are responsible for regulating metabolism. Thyroxine was discovered and isolated by Edward Calvin Kendall in 1915. Thyroid hormones are produced by the follicular cells of the thyroid gland through the action of thyroperoxidase, which iodinates reactive tyrosine residues on thyroglobulin. Proteolysis of the thyroglobulin in cellular lysosomes releases the small molecule thyroid hormones. In mammals, tyrosine can be formed from dietary phenylalanine by the enzyme phenylalanine hydroxylase, found in large amounts in the liver. Phenylalanine is considered an essential amino acid, while tyrosine (which can be endogenously synthesized) is not. In plants and most microbes, tyrosine is produced via prephenate, an intermediate that is produced as part of the shikimate pathway.
References
Tyrosine Metabolism References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Yang YS, Wang CC, Chen BH, Hou YH, Hung KS, Mao YC: Tyrosine sulfation as a protein post-translational modification. Molecules. 2015 Jan 28;20(2):2138-64. doi: 10.3390/molecules20022138.
Pubmed: 25635379
Lee RW, Huttner WB: Tyrosine-O-sulfated proteins of PC12 pheochromocytoma cells and their sulfation by a tyrosylprotein sulfotransferase. J Biol Chem. 1983 Sep 25;258(18):11326-34.
Pubmed: 6577005
Westmuckett AD, Thacker KM, Moore KL: Tyrosine sulfation of native mouse Psgl-1 is required for optimal leukocyte rolling on P-selectin in vivo. PLoS One. 2011;6(5):e20406. doi: 10.1371/journal.pone.0020406. Epub 2011 May 25.
Pubmed: 21633705
Ruzzene M, Donella-Deana A, Marin O, Perich JW, Ruzza P, Borin G, Calderan A, Pinna LA: Specificity of T-cell protein tyrosine phosphatase toward phosphorylated synthetic peptides. Eur J Biochem. 1993 Jan 15;211(1-2):289-95. doi: 10.1111/j.1432-1033.1993.tb19897.x.
Pubmed: 7678807
Honova E, Miller SA, Ehrenkranz RA, Woo A: Tyrosine transaminase: development of daily rhythm in liver of neonatal rat. Science. 1968 Nov 29;162(3857):999-1001. doi: 10.1126/science.162.3857.999.
Pubmed: 4387001
Bartesaghi S, Valez V, Trujillo M, Peluffo G, Romero N, Zhang H, Kalyanaraman B, Radi R: Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester. Biochemistry. 2006 Jun 6;45(22):6813-25. doi: 10.1021/bi060363x.
Pubmed: 16734418
Goldstein S, Czapski G, Lind J, Merenyi G: Tyrosine nitration by simultaneous generation of (.)NO and O-(2) under physiological conditions. How the radicals do the job. J Biol Chem. 2000 Feb 4;275(5):3031-6. doi: 10.1074/jbc.275.5.3031.
Pubmed: 10652282
Radi R: Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res. 2013 Feb 19;46(2):550-9. doi: 10.1021/ar300234c. Epub 2012 Nov 16.
Pubmed: 23157446
Sherry DM, Kanan Y, Hamilton R, Hoffhines A, Arbogast KL, Fliesler SJ, Naash MI, Moore KL, Al-Ubaidi MR: Differential developmental deficits in retinal function in the absence of either protein tyrosine sulfotransferase-1 or -2. PLoS One. 2012;7(6):e39702. doi: 10.1371/journal.pone.0039702. Epub 2012 Jun 22.
Pubmed: 22745813
Rettenmeier R, Natt E, Zentgraf H, Scherer G: Isolation and characterization of the human tyrosine aminotransferase gene. Nucleic Acids Res. 1990 Jul 11;18(13):3853-61. doi: 10.1093/nar/18.13.3853.
Pubmed: 1973834
Zelenin SM, Mertvetsov NP: [Nucleotide sequence of the human tyrosine aminotransferase gene]. Bioorg Khim. 1994 Feb;20(2):196-204.
Pubmed: 7908801
Seralini GE, Luu-The V, Labrie F: Cloning and expression of human tyrosine aminotransferase cDNA. Biochim Biophys Acta. 1995 Jan 2;1260(1):97-101. doi: 10.1016/0167-4781(94)00191-5.
Pubmed: 7999802
Bousquet-Lemercier B, Pol S, Pave-Preux M, Hanoune J, Barouki R: Properties of human liver cytosolic aspartate aminotransferase mRNAs generated by alternative polyadenylation site selection. Biochemistry. 1990 Jun 5;29(22):5293-9. doi: 10.1021/bi00474a011.
Pubmed: 1974457
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Deloukas P, Earthrowl ME, Grafham DV, Rubenfield M, French L, Steward CA, Sims SK, Jones MC, Searle S, Scott C, Howe K, Hunt SE, Andrews TD, Gilbert JG, Swarbreck D, Ashurst JL, Taylor A, Battles J, Bird CP, Ainscough R, Almeida JP, Ashwell RI, Ambrose KD, Babbage AK, Bagguley CL, Bailey J, Banerjee R, Bates K, Beasley H, Bray-Allen S, Brown AJ, Brown JY, Burford DC, Burrill W, Burton J, Cahill P, Camire D, Carter NP, Chapman JC, Clark SY, Clarke G, Clee CM, Clegg S, Corby N, Coulson A, Dhami P, Dutta I, Dunn M, Faulkner L, Frankish A, Frankland JA, Garner P, Garnett J, Gribble S, Griffiths C, Grocock R, Gustafson E, Hammond S, Harley JL, Hart E, Heath PD, Ho TP, Hopkins B, Horne J, Howden PJ, Huckle E, Hynds C, Johnson C, Johnson D, Kana A, Kay M, Kimberley AM, Kershaw JK, Kokkinaki M, Laird GK, Lawlor S, Lee HM, Leongamornlert DA, Laird G, Lloyd C, Lloyd DM, Loveland J, Lovell J, McLaren S, McLay KE, McMurray A, Mashreghi-Mohammadi M, Matthews L, Milne S, Nickerson T, Nguyen M, Overton-Larty E, Palmer SA, Pearce AV, Peck AI, Pelan S, Phillimore B, Porter K, Rice CM, Rogosin A, Ross MT, Sarafidou T, Sehra HK, Shownkeen R, Skuce CD, Smith M, Standring L, Sycamore N, Tester J, Thorpe A, Torcasso W, Tracey A, Tromans A, Tsolas J, Wall M, Walsh J, Wang H, Weinstock K, West AP, Willey DL, Whitehead SL, Wilming L, Wray PW, Young L, Chen Y, Lovering RC, Moschonas NK, Siebert R, Fechtel K, Bentley D, Durbin R, Hubbard T, Doucette-Stamm L, Beck S, Smith DR, Rogers J: The DNA sequence and comparative analysis of human chromosome 10. Nature. 2004 May 27;429(6990):375-81. doi: 10.1038/nature02462.
Pubmed: 15164054
Ruetschi U, Cerone R, Perez-Cerda C, Schiaffino MC, Standing S, Ugarte M, Holme E: Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III. Hum Genet. 2000 Jun;106(6):654-62. doi: 10.1007/s004390000307.
Pubmed: 10942115
Awata H, Endo F, Matsuda I: Structure of the human 4-hydroxyphenylpyruvic acid dioxygenase gene (HPD). Genomics. 1994 Oct;23(3):534-9. doi: 10.1006/geno.1994.1540.
Pubmed: 7851880
Stenman G, Roijer E, Ruetschi U, Dellsen A, Rymo L, Lindstedt S: Regional assignment of the human 4-hydroxyphenylpyruvate dioxygenase gene (HPD) to 12q24-->qter by fluorescence in situ hybridization. Cytogenet Cell Genet. 1995;71(4):374-6. doi: 10.1159/000134142.
Pubmed: 8521727
Fernandez-Canon JM, Penalva MA: Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J Biol Chem. 1998 Jan 2;273(1):329-37. doi: 10.1074/jbc.273.1.329.
Pubmed: 9417084
Board PG, Baker RT, Chelvanayagam G, Jermiin LS: Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J. 1997 Dec 15;328 ( Pt 3):929-35. doi: 10.1042/bj3280929.
Pubmed: 9396740
Blackburn AC, Woollatt E, Sutherland GR, Board PG: Characterization and chromosome location of the gene GSTZ1 encoding the human Zeta class glutathione transferase and maleylacetoacetate isomerase. Cytogenet Cell Genet. 1998;83(1-2):109-14. doi: 10.1159/000015145.
Pubmed: 9925947
Phaneuf D, Labelle Y, Berube D, Arden K, Cavenee W, Gagne R, Tanguay RM: Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15. Am J Hum Genet. 1991 Mar;48(3):525-35.
Pubmed: 1998338
Bechtel S, Rosenfelder H, Duda A, Schmidt CP, Ernst U, Wellenreuther R, Mehrle A, Schuster C, Bahr A, Blocker H, Heubner D, Hoerlein A, Michel G, Wedler H, Kohrer K, Ottenwalder B, Poustka A, Wiemann S, Schupp I: The full-ORF clone resource of the German cDNA Consortium. BMC Genomics. 2007 Oct 31;8:399. doi: 10.1186/1471-2164-8-399.
Pubmed: 17974005
Ichinose H, Kurosawa Y, Titani K, Fujita K, Nagatsu T: Isolation and characterization of a cDNA clone encoding human aromatic L-amino acid decarboxylase. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1024-30. doi: 10.1016/0006-291x(89)91772-5.
Pubmed: 2590185
Scherer LJ, McPherson JD, Wasmuth JJ, Marsh JL: Human dopa decarboxylase: localization to human chromosome 7p11 and characterization of hepatic cDNAs. Genomics. 1992 Jun;13(2):469-71.
Pubmed: 1612608
Sumi-Ichinose C, Ichinose H, Takahashi E, Hori T, Nagatsu T: Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry. 1992 Mar 3;31(8):2229-38. doi: 10.1021/bi00123a004.
Pubmed: 1540578
Hsu LC, Chang WC, Shibuya A, Yoshida A: Human stomach aldehyde dehydrogenase cDNA and genomic cloning, primary structure, and expression in Escherichia coli. J Biol Chem. 1992 Feb 15;267(5):3030-7.
Pubmed: 1737758
Hsu LC, Yoshida A: Human stomach aldehyde dehydrogenase, ALDH3. Adv Exp Med Biol. 1993;328:141-52. doi: 10.1007/978-1-4615-2904-0_16.
Pubmed: 8493892
Tripathi RK, Strunk KM, Giebel LB, Weleber RG, Spritz RA: Tyrosinase gene mutations in type I (tyrosinase-deficient) oculocutaneous albinism define two clusters of missense substitutions. Am J Med Genet. 1992 Jul 15;43(5):865-71. doi: 10.1002/ajmg.1320430523.
Pubmed: 1642278
Giebel LB, Strunk KM, Spritz RA: Organization and nucleotide sequences of the human tyrosinase gene and a truncated tyrosinase-related segment. Genomics. 1991 Mar;9(3):435-45.
Pubmed: 1903356
Kwon BS, Haq AK, Pomerantz SH, Halaban R: Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7473-7. doi: 10.1073/pnas.84.21.7473.
Pubmed: 2823263
Williams HJ, Bray N, Murphy KC, Cardno AG, Jones LA, Owen MJ: No evidence for allelic association between schizophrenia and a functional variant of the human dopamine beta-hydroxylase gene (DBH). Am J Med Genet. 1999 Oct 15;88(5):557-9.
Pubmed: 10490716
Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blocker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I: DNA sequence and analysis of human chromosome 9. Nature. 2004 May 27;429(6990):369-74. doi: 10.1038/nature02465.
Pubmed: 15164053
Lamouroux A, Vigny A, Faucon Biguet N, Darmon MC, Franck R, Henry JP, Mallet J: The primary structure of human dopamine-beta-hydroxylase: insights into the relationship between the soluble and the membrane-bound forms of the enzyme. EMBO J. 1987 Dec 20;6(13):3931-7.
Pubmed: 3443096
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings