Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Capecitabine Metabolism Pathway
Homo sapiens
Drug Metabolism Pathway
Created: 2013-09-11
Last Updated: 2019-08-16
Capecitabine is a fluoropyrimidine anticancer drug. After absorption, it is metabolized in the liver to the intermediate 5’-deoxy-5-fluorouridine, which is subsequently converted into 5-fluorouracil (5-FU) by intracellular thymidine phosphorylase. 5-FU exerts cytotoxic effects on the cell by direct incorporation into DNA and RNA as well as by inhibiting thymidylate synthase. Since thymidine phosphorylase is present at 3-10 fold higher concentration in cancer cells compared normal cells, capecitabine’s cytotoxic effect is selective for cancer cells.
References
Capecitabine Pathway References
Aprile G, Mazzer M, Moroso S, Puglisi F: Pharmacology and therapeutic efficacy of capecitabine: focus on breast and colorectal cancer. Anticancer Drugs. 2009 Apr;20(4):217-29. doi: 10.1097/CAD.0b013e3283293fd4.
Pubmed: 19247178
Walko CM, Lindley C: Capecitabine: a review. Clin Ther. 2005 Jan;27(1):23-44. doi: 10.1016/j.clinthera.2005.01.005.
Pubmed: 15763604
Takeishi K, Kaneda S, Ayusawa D, Shimizu K, Gotoh O, Seno T: Nucleotide sequence of a functional cDNA for human thymidylate synthase. Nucleic Acids Res. 1985 Mar 25;13(6):2035-43. doi: 10.1093/nar/13.6.2035.
Pubmed: 2987839
Kaneda S, Nalbantoglu J, Takeishi K, Shimizu K, Gotoh O, Seno T, Ayusawa D: Structural and functional analysis of the human thymidylate synthase gene. J Biol Chem. 1990 Nov 25;265(33):20277-84.
Pubmed: 2243092
Hisatomi H, Tanemura H, Iizuka T, Katsumata K, Nagao K, Sumida H, Udagawa H, Hikiji K: Differential alternative splicing expressions of thymidylate synthase isoforms. Cancer Lett. 2003 Apr 25;193(2):127-31. doi: 10.1016/s0304-3835(03)00005-3.
Pubmed: 12706868
Ishikawa F, Miyazono K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W, Heldin CH: Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature. 1989 Apr 13;338(6216):557-62. doi: 10.1038/338557a0.
Pubmed: 2467210
Finnis C, Goodey A, Courtney M, Sleep D: Expression of recombinant platelet-derived endothelial cell growth factor in the yeast Saccharomyces cerevisiae. Yeast. 1992 Jan;8(1):57-60. doi: 10.1002/yea.320080106.
Pubmed: 1580101
Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink LJ, Ainscough R, Almeida JP, Babbage A, Bagguley C, Bailey J, Barlow K, Bates KN, Beasley O, Bird CP, Blakey S, Bridgeman AM, Buck D, Burgess J, Burrill WD, O'Brien KP, et al.: The DNA sequence of human chromosome 22. Nature. 1999 Dec 2;402(6761):489-95. doi: 10.1038/990031.
Pubmed: 10591208
Munger JS, Shi GP, Mark EA, Chin DT, Gerard C, Chapman HA: A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J Biol Chem. 1991 Oct 5;266(28):18832-8.
Pubmed: 1918003
Kroetz DL, McBride OW, Gonzalez FJ: Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry. 1993 Nov 2;32(43):11606-17. doi: 10.1021/bi00094a018.
Pubmed: 8218228
Shibata F, Takagi Y, Kitajima M, Kuroda T, Omura T: Molecular cloning and characterization of a human carboxylesterase gene. Genomics. 1993 Jul;17(1):76-82. doi: 10.1006/geno.1993.1285.
Pubmed: 8406473
Laliberte J, Momparler RL: Human cytidine deaminase: purification of enzyme, cloning, and expression of its complementary DNA. Cancer Res. 1994 Oct 15;54(20):5401-7.
Pubmed: 7923172
Demontis S, Terao M, Brivio M, Zanotta S, Bruschi M, Garattini E: Isolation and characterization of the gene coding for human cytidine deaminase. Biochim Biophys Acta. 1998 Dec 22;1443(3):323-33. doi: 10.1016/s0167-4781(98)00235-8.
Pubmed: 9878810
Gran C, Boyum A, Johansen RF, Lovhaug D, Seeberg EC: Growth inhibition of granulocyte-macrophage colony-forming cells by human cytidine deaminase requires the catalytic function of the protein. Blood. 1998 Jun 1;91(11):4127-35.
Pubmed: 9596658
Ritzel MW, Yao SY, Huang MY, Elliott JF, Cass CE, Young JD: Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). Am J Physiol. 1997 Feb;272(2 Pt 1):C707-14. doi: 10.1152/ajpcell.1997.272.2.C707.
Pubmed: 9124315
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Zody MC, Garber M, Sharpe T, Young SK, Rowen L, O'Neill K, Whittaker CA, Kamal M, Chang JL, Cuomo CA, Dewar K, FitzGerald MG, Kodira CD, Madan A, Qin S, Yang X, Abbasi N, Abouelleil A, Arachchi HM, Baradarani L, Birditt B, Bloom S, Bloom T, Borowsky ML, Burke J, Butler J, Cook A, DeArellano K, DeCaprio D, Dorris L 3rd, Dors M, Eichler EE, Engels R, Fahey J, Fleetwood P, Friedman C, Gearin G, Hall JL, Hensley G, Johnson E, Jones C, Kamat A, Kaur A, Locke DP, Madan A, Munson G, Jaffe DB, Lui A, Macdonald P, Mauceli E, Naylor JW, Nesbitt R, Nicol R, O'Leary SB, Ratcliffe A, Rounsley S, She X, Sneddon KM, Stewart S, Sougnez C, Stone SM, Topham K, Vincent D, Wang S, Zimmer AR, Birren BW, Hood L, Lander ES, Nusbaum C: Analysis of the DNA sequence and duplication history of human chromosome 15. Nature. 2006 Mar 30;440(7084):671-5. doi: 10.1038/nature04601.
Pubmed: 16572171
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings