Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Nicotine Metabolism Pathway
Homo sapiens
Drug Metabolism Pathway
Created: 2013-09-11
Last Updated: 2019-08-30
Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nicotinic acetylcholine receptors on dopaminergic neurons in the cortico-limbic pathways. This causes the channel to open and allow conductance of multiple cations including sodium, calcium, and potassium. This leads to depolarization, which activates voltage-gated calcium channels and allows more calcium to enter the axon terminal. Calcium stimulates vesicle trafficking towards the plasma membrane and the release of dopamine into the synapse. Dopamine binding to its receptors is responsible the euphoric and addictive properties of nicotine.
Nicotine also binds to nicotinic acetylcholine receptors on the chromaffin cells in the adrenal medulla. Binding opens the ion channel allowing influx of sodium, causing depolarization of the cell, which activates voltage-gated calcium channels. Calcium triggers the release of epinephrine from intracellular vesicles into the bloodstream, which causes vasoconstriction, increased blood pressure, increased heart rate, and increased blood sugar.
References
Nicotine Pathway References
Mansvelder HD, Mertz M, Role LW: Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin Cell Dev Biol. 2009 Jun;20(4):432-40. doi: 10.1016/j.semcdb.2009.01.007. Epub 2009 Jan 22.
Pubmed: 19560048
Narahashi T, Fenster CP, Quick MW, Lester RA, Marszalec W, Aistrup GL, Sattelle DB, Martin BR, Levin ED: Symposium overview: mechanism of action of nicotine on neuronal acetylcholine receptors, from molecule to behavior. Toxicol Sci. 2000 Oct;57(2):193-202.
Pubmed: 11006350
Dolphin CT, Cullingford TE, Shephard EA, Smith RL, Phillips IR: Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FM04. Eur J Biochem. 1996 Feb 1;235(3):683-9. doi: 10.1111/j.1432-1033.1996.00683.x.
Pubmed: 8654418
Dolphin CT, Riley JH, Smith RL, Shephard EA, Phillips IR: Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA. Genomics. 1997 Dec 1;46(2):260-7. doi: 10.1006/geno.1997.5031.
Pubmed: 9417913
Yeung CK, Adman ET, Rettie AE: Functional characterization of genetic variants of human FMO3 associated with trimethylaminuria. Arch Biochem Biophys. 2007 Aug 15;464(2):251-9. doi: 10.1016/j.abb.2007.04.014. Epub 2007 May 2.
Pubmed: 17531949
Ritter JK, Crawford JM, Owens IS: Cloning of two human liver bilirubin UDP-glucuronosyltransferase cDNAs with expression in COS-1 cells. J Biol Chem. 1991 Jan 15;266(2):1043-7.
Pubmed: 1898728
Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS: A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem. 1992 Feb 15;267(5):3257-61.
Pubmed: 1339448
Gong QH, Cho JW, Huang T, Potter C, Gholami N, Basu NK, Kubota S, Carvalho S, Pennington MW, Owens IS, Popescu NC: Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics. 2001 Jun;11(4):357-68.
Pubmed: 11434514
Wooster R, Sutherland L, Ebner T, Clarke D, Da Cruz e Silva O, Burchell B: Cloning and stable expression of a new member of the human liver phenol/bilirubin: UDP-glucuronosyltransferase cDNA family. Biochem J. 1991 Sep 1;278 ( Pt 2):465-9. doi: 10.1042/bj2780465.
Pubmed: 1910331
Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH, Wilson RK: Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature. 2005 Apr 7;434(7034):724-31. doi: 10.1038/nature03466.
Pubmed: 15815621
Hadidi H, Zahlsen K, Idle JR, Cholerton S: A single amino acid substitution (Leu160His) in cytochrome P450 CYP2A6 causes switching from 7-hydroxylation to 3-hydroxylation of coumarin. Food Chem Toxicol. 1997 Sep;35(9):903-7.
Pubmed: 9409631
Miles JS, Bickmore W, Brook JD, McLaren AW, Meehan R, Wolf CR: Close linkage of the human cytochrome P450IIA and P450IIB gene subfamilies: implications for the assignment of substrate specificity. Nucleic Acids Res. 1989 Apr 25;17(8):2907-17. doi: 10.1093/nar/17.8.2907.
Pubmed: 2726448
Yamano S, Nagata K, Yamazoe Y, Kato R, Gelboin HV, Gonzalez FJ: cDNA and deduced amino acid sequences of human P450 IIA3 (CYP2A3). Nucleic Acids Res. 1989 Jun 26;17(12):4888. doi: 10.1093/nar/17.12.4888.
Pubmed: 2748347
Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM: Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics. 2001 Jul;11(5):399-415.
Pubmed: 11470993
Lang T, Klein K, Richter T, Zibat A, Kerb R, Eichelbaum M, Schwab M, Zanger UM: Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles. J Pharmacol Exp Ther. 2004 Oct;311(1):34-43. doi: 10.1124/jpet.104.068973. Epub 2004 Jun 9.
Pubmed: 15190123
Yamano S, Nhamburo PT, Aoyama T, Meyer UA, Inaba T, Kalow W, Gelboin HV, McBride OW, Gonzalez FJ: cDNA cloning and sequence and cDNA-directed expression of human P450 IIB1: identification of a normal and two variant cDNAs derived from the CYP2B locus on chromosome 19 and differential expression of the IIB mRNAs in human liver. Biochemistry. 1989 Sep 5;28(18):7340-8. doi: 10.1021/bi00444a029.
Pubmed: 2573390
Neumeier M, Weigert J, Schaffler A, Weiss TS, Schmidl C, Buttner R, Bollheimer C, Aslanidis C, Scholmerich J, Buechler C: Aldehyde oxidase 1 is highly abundant in hepatic steatosis and is downregulated by adiponectin and fenofibric acid in hepatocytes in vitro. Biochem Biophys Res Commun. 2006 Nov 24;350(3):731-5. doi: 10.1016/j.bbrc.2006.09.101. Epub 2006 Sep 27.
Pubmed: 17022944
Fu C, Di L, Han X, Soderstrom C, Snyder M, Troutman MD, Obach RS, Zhang H: Aldehyde oxidase 1 (AOX1) in human liver cytosols: quantitative characterization of AOX1 expression level and activity relationship. Drug Metab Dispos. 2013 Oct;41(10):1797-804. doi: 10.1124/dmd.113.053082. Epub 2013 Jul 15.
Pubmed: 23857892
Wright RM, Vaitaitis GM, Wilson CM, Repine TB, Terada LS, Repine JE: cDNA cloning, characterization, and tissue-specific expression of human xanthine dehydrogenase/xanthine oxidase. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10690-4. doi: 10.1073/pnas.90.22.10690.
Pubmed: 8248161
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings