Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Valproic Acid Metabolism Pathway
Homo sapiens
Drug Metabolism Pathway
Created: 2013-09-11
Last Updated: 2019-09-12
Valproic acid (VPA) is metabolized almost entirely in the liver, via at least there routes: glucuronidation, beta oxidation in the mitochondria, and cytochrome P450 mediated oxidation. The glucuronidation of VPA is mediated by UGT1A3, UGT1A4, UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. The key CYP-mediated reaction of the VPA metabolic pathway is the generation of 4-ene-VPA by CYP2C9, CYP2A6 and CYP2B6. These three enzymes also catalyze the formation of 4-OH-VPA and 5-OH-VPA. Moreover, CYP2A6 mediates the oxidation of VPA to 3-OH-VPA. Inside the mitochondria, the first step of oxidation is the formation of (VPA-CoA) catalyzed by medium-chain acyl-CoA synthase, followed by the conversion to 2-ene-VPA-CoA through 2-methyl-branched chain acyl-CoA dehydrogenase (ACADSB). 2-ene-VPA-CoA is further converted to 3-hydroxyl-valproyl-VPA (3-OH-VPA-CoA) by an enoyl-CoA hydratase, crotonase (ECSH1) and then 3-OH-VPA-CoA is metabolized to 3-keto-valproyl-CoA (3-oxo-VPA-CoA) through the action of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase. Another route of VPA metabolism in the mitochondria includes the conversion of 4-ene-VPA to 4-ene-VPA-CoA ester catalyzed by ACADSB, followed by a beta-oxidation to form 2,4-diene-VPA-CoA ester. The latter metabolite can furthermore be conjugated to glutathione to form thiol metabolites.
References
Valproic Acid Pathway References
[PharmgKB](http://www.pharmgkb.org/pathway/PA165964265)
Kassahun K, Hu P, Grillo MP, Davis MR, Jin L, Baillie TA: Metabolic activation of unsaturated derivatives of valproic acid. Identification of novel glutathione adducts formed through coenzyme A-dependent and -independent processes. Chem Biol Interact. 1994 Mar;90(3):253-75.
Pubmed: 8168173
Kassahun K, Farrell K, Abbott F: Identification and characterization of the glutathione and N-acetylcysteine conjugates of (E)-2-propyl-2,4-pentadienoic acid, a toxic metabolite of valproic acid, in rats and humans. Drug Metab Dispos. 1991 Mar-Apr;19(2):525-35.
Pubmed: 1676665
Luis PB, Ruiter JP, Ofman R, Ijlst L, Moedas M, Diogo L, Garcia P, de Almeida IT, Duran M, Wanders RJ, Silva MF: Valproic acid utilizes the isoleucine breakdown pathway for its complete beta-oxidation. Biochem Pharmacol. 2011 Dec 1;82(11):1740-6. doi: 10.1016/j.bcp.2011.07.103. Epub 2011 Aug 6.
Pubmed: 21843514
Li J, Norwood DL, Mao LF, Schulz H: Mitochondrial metabolism of valproic acid. Biochemistry. 1991 Jan 15;30(2):388-94.
Pubmed: 1988037
Ito M, Ikeda Y, Arnez JG, Finocchiaro G, Tanaka K: The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase. Biochim Biophys Acta. 1990 May 16;1034(2):213-8.
Pubmed: 2112956
Ho PC, Abbott FS, Zanger UM, Chang TK: Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J. 2003;3(6):335-42. doi: 10.1038/sj.tpj.6500210.
Pubmed: 14597963
Kiang TK, Ho PC, Anari MR, Tong V, Abbott FS, Chang TK: Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci. 2006 Dec;94(2):261-71. doi: 10.1093/toxsci/kfl096. Epub 2006 Aug 31.
Pubmed: 16945988
Sadeque AJ, Fisher MB, Korzekwa KR, Gonzalez FJ, Rettie AE: Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther. 1997 Nov;283(2):698-703.
Pubmed: 9353388
Chung JY, Cho JY, Yu KS, Kim JR, Lim KS, Sohn DR, Shin SG, Jang IJ: Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin Pharmacol Ther. 2008 Apr;83(4):595-600. doi: 10.1038/sj.clpt.6100324. Epub 2007 Aug 8.
Pubmed: 17687269
Argikar UA, Remmel RP: Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos. 2009 Jan;37(1):229-36. doi: 10.1124/dmd.108.022426. Epub 2008 Oct 6.
Pubmed: 18838507
Krishnaswamy S, Hao Q, Al-Rohaimi A, Hesse LM, von Moltke LL, Greenblatt DJ, Court MH: UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J Pharmacol Exp Ther. 2005 Jun;313(3):1340-6. doi: 10.1124/jpet.104.081968. Epub 2005 Mar 10.
Pubmed: 15761113
Hadidi H, Zahlsen K, Idle JR, Cholerton S: A single amino acid substitution (Leu160His) in cytochrome P450 CYP2A6 causes switching from 7-hydroxylation to 3-hydroxylation of coumarin. Food Chem Toxicol. 1997 Sep;35(9):903-7.
Pubmed: 9409631
Miles JS, Bickmore W, Brook JD, McLaren AW, Meehan R, Wolf CR: Close linkage of the human cytochrome P450IIA and P450IIB gene subfamilies: implications for the assignment of substrate specificity. Nucleic Acids Res. 1989 Apr 25;17(8):2907-17. doi: 10.1093/nar/17.8.2907.
Pubmed: 2726448
Yamano S, Nagata K, Yamazoe Y, Kato R, Gelboin HV, Gonzalez FJ: cDNA and deduced amino acid sequences of human P450 IIA3 (CYP2A3). Nucleic Acids Res. 1989 Jun 26;17(12):4888. doi: 10.1093/nar/17.12.4888.
Pubmed: 2748347
Meehan RR, Gosden JR, Rout D, Hastie ND, Friedberg T, Adesnik M, Buckland R, van Heyningen V, Fletcher J, Spurr NK, et al.: Human cytochrome P-450 PB-1: a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10. Am J Hum Genet. 1988 Jan;42(1):26-37.
Pubmed: 2827463
Kimura S, Pastewka J, Gelboin HV, Gonzalez FJ: cDNA and amino acid sequences of two members of the human P450IIC gene subfamily. Nucleic Acids Res. 1987 Dec 10;15(23):10053-4. doi: 10.1093/nar/15.23.10053.
Pubmed: 3697070
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM: Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics. 2001 Jul;11(5):399-415.
Pubmed: 11470993
Lang T, Klein K, Richter T, Zibat A, Kerb R, Eichelbaum M, Schwab M, Zanger UM: Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles. J Pharmacol Exp Ther. 2004 Oct;311(1):34-43. doi: 10.1124/jpet.104.068973. Epub 2004 Jun 9.
Pubmed: 15190123
Yamano S, Nhamburo PT, Aoyama T, Meyer UA, Inaba T, Kalow W, Gelboin HV, McBride OW, Gonzalez FJ: cDNA cloning and sequence and cDNA-directed expression of human P450 IIB1: identification of a normal and two variant cDNAs derived from the CYP2B locus on chromosome 19 and differential expression of the IIB mRNAs in human liver. Biochemistry. 1989 Sep 5;28(18):7340-8. doi: 10.1021/bi00444a029.
Pubmed: 2573390
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings