Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Sarcosine Oncometabolite Pathway
Homo sapiens
Disease Pathway
Created: 2015-12-16
Last Updated: 2022-10-21
Sarcosine is a compound derived from the amino acid glycine and is involved in both its synthesis and degradation, and is an intermediate in the metabolism of choline to glycine. In cases of prostate cancer, the cancer cells seem to produce higher levels of sarcosine. Elevated levels of sarcosine found in the urine of patients with prostate cancer, and it has been suggested that these elevated levels are responsible for the development of the cancer.
This pathway begins with choline’s transport into the mitochondrial matrix via xolute carrier family protein 44 A1 and the choline transporter-like protein 2. Once in the matrix, choline is oxidized to betaine aldehyde by choline dehydrogenase, and in the process reduces an acceptor. Betaine aldehyde is then converted to betaine by the addition of a water molecule by alpha-aminoadipic semialdehyde dehydrogenase. Following this, betaine is transported out of the mitochondria by an unknown transporter, where it then reacts with homocysteine to form dimethylglycine and L-methionine in a reaction catalyzed by betaine-homocysteine S-methyltransferase 1. The dimethylglycine is then transported back into the mitochondrial matrix by another unknown transporter, where it can react with tetrahydrofolate to form sarcosine and 5-methyltetrahydrofolic acid in a reaction catalyzed by dimethylglycine dehydrogenase. In at least some cases of prostate cancer cells, the SARDH gene is mutated, which encodes the sarcosine dehydrogenase protein. This can lead to an increase of sarcosine in the cells, as sarcosine dehydrogenase typically converts sarcosine to glycine, which is then converted to and from L-serine by serine hydroxymethyltransferase. With a non-functional or less functional enzyme, sarcosine levels will be increased, and serine and glycine levels will be reduced.
A separate set of reactions outside of the mitochondria begins with the L-methionine produced by betaine—homocysteine S-methyltransferase 1, which is then converted to S-adenosylmethionine by a complex consisting of S-adenosylmethionine synthase and methionine adenosyltransferase. S-adenosylmethionine then reacts with glycine reversibly to form S-adenosylhomocysteine, as well as sarcosine. The expression of the gene encoding glycine N-methyltransferase, GNMT, can also be elevated in cancer tissues, leading to an increased concentration of sarcosine outside of the mitochondria as well.
References
Sarcosine Oncometabolite Pathway References
Khan AP, Rajendiran TM, Ateeq B, Asangani IA, Athanikar JN, Yocum AK, Mehra R, Siddiqui J, Palapattu G, Wei JT, Michailidis G, Sreekumar A, Chinnaiyan AM: The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013 May;15(5):491-501.
Pubmed: 23633921
de Vogel S, Ulvik A, Meyer K, Ueland PM, Nygard O, Vollset SE, Tell GS, Gregory JF 3rd, Tretli S, Bjorge T: Sarcosine and other metabolites along the choline oxidation pathway in relation to prostate cancer--a large nested case-control study within the JANUS cohort in Norway. Int J Cancer. 2014 Jan 1;134(1):197-206. doi: 10.1002/ijc.28347. Epub 2013 Jul 27.
Pubmed: 23797698
O'Regan S, Traiffort E, Ruat M, Cha N, Compaore D, Meunier FM: An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1835-40. doi: 10.1073/pnas.030339697.
Pubmed: 10677542
Wille S, Szekeres A, Majdic O, Prager E, Staffler G, Stockl J, Kunthalert D, Prieschl EE, Baumruker T, Burtscher H, Zlabinger GJ, Knapp W, Stockinger H: Characterization of CDw92 as a member of the choline transporter-like protein family regulated specifically on dendritic cells. J Immunol. 2001 Nov 15;167(10):5795-804. doi: 10.4049/jimmunol.167.10.5795.
Pubmed: 11698453
Traiffort E, Ruat M, O'Regan S, Meunier FM: Molecular characterization of the family of choline transporter-like proteins and their splice variants. J Neurochem. 2005 Mar;92(5):1116-25. doi: 10.1111/j.1471-4159.2004.02962.x.
Pubmed: 15715662
Kommareddi PK, Nair TS, Raphael Y, Telian SA, Kim AH, Arts HA, El-Kashlan HK, Carey TE: Cochlin isoforms and their interaction with CTL2 (SLC44A2) in the inner ear. J Assoc Res Otolaryngol. 2007 Dec;8(4):435-46. doi: 10.1007/s10162-007-0099-2. Epub 2007 Oct 10.
Pubmed: 17926100
Kommareddi PK, Nair TS, Thang LV, Galano MM, Babu E, Ganapathy V, Kanazawa T, McHugh JB, Carey TE: Isoforms, expression, glycosylation, and tissue distribution of CTL2/SLC44A2. Protein J. 2010 Aug;29(6):417-26. doi: 10.1007/s10930-010-9268-y.
Pubmed: 20665236
Muzny DM, Scherer SE, Kaul R, Wang J, Yu J, Sudbrak R, Buhay CJ, Chen R, Cree A, Ding Y, Dugan-Rocha S, Gill R, Gunaratne P, Harris RA, Hawes AC, Hernandez J, Hodgson AV, Hume J, Jackson A, Khan ZM, Kovar-Smith C, Lewis LR, Lozado RJ, Metzker ML, Milosavljevic A, Miner GR, Morgan MB, Nazareth LV, Scott G, Sodergren E, Song XZ, Steffen D, Wei S, Wheeler DA, Wright MW, Worley KC, Yuan Y, Zhang Z, Adams CQ, Ansari-Lari MA, Ayele M, Brown MJ, Chen G, Chen Z, Clendenning J, Clerc-Blankenburg KP, Chen R, Chen Z, Davis C, Delgado O, Dinh HH, Dong W, Draper H, Ernst S, Fu G, Gonzalez-Garay ML, Garcia DK, Gillett W, Gu J, Hao B, Haugen E, Havlak P, He X, Hennig S, Hu S, Huang W, Jackson LR, Jacob LS, Kelly SH, Kube M, Levy R, Li Z, Liu B, Liu J, Liu W, Lu J, Maheshwari M, Nguyen BV, Okwuonu GO, Palmeiri A, Pasternak S, Perez LM, Phelps KA, Plopper FJ, Qiang B, Raymond C, Rodriguez R, Saenphimmachak C, Santibanez J, Shen H, Shen Y, Subramanian S, Tabor PE, Verduzco D, Waldron L, Wang J, Wang J, Wang Q, Williams GA, Wong GK, Yao Z, Zhang J, Zhang X, Zhao G, Zhou J, Zhou Y, Nelson D, Lehrach H, Reinhardt R, Naylor SL, Yang H, Olson M, Weinstock G, Gibbs RA: The DNA sequence, annotation and analysis of human chromosome 3. Nature. 2006 Apr 27;440(7088):1194-8. doi: 10.1038/nature04728.
Pubmed: 16641997
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22.
Pubmed: 24275569
Brocker C, Lassen N, Estey T, Pappa A, Cantore M, Orlova VV, Chavakis T, Kavanagh KL, Oppermann U, Vasiliou V: Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J Biol Chem. 2010 Jun 11;285(24):18452-63. doi: 10.1074/jbc.M109.077925. Epub 2010 Mar 5.
Pubmed: 20207735
Plecko B, Paul K, Paschke E, Stoeckler-Ipsiroglu S, Struys E, Jakobs C, Hartmann H, Luecke T, di Capua M, Korenke C, Hikel C, Reutershahn E, Freilinger M, Baumeister F, Bosch F, Erwa W: Biochemical and molecular characterization of 18 patients with pyridoxine-dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene. Hum Mutat. 2007 Jan;28(1):19-26. doi: 10.1002/humu.20433.
Pubmed: 17068770
Lee P, Kuhl W, Gelbart T, Kamimura T, West C, Beutler E: Homology between a human protein and a protein of the green garden pea. Genomics. 1994 May 15;21(2):371-8. doi: 10.1006/geno.1994.1279.
Pubmed: 8088832
Weisberg IS, Park E, Ballman KV, Berger P, Nunn M, Suh DS, Breksa AP 3rd, Garrow TA, Rozen R: Investigations of a common genetic variant in betaine-homocysteine methyltransferase (BHMT) in coronary artery disease. Atherosclerosis. 2003 Apr;167(2):205-14. doi: 10.1016/s0021-9150(03)00010-8.
Pubmed: 12818402
Garrow TA: Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J Biol Chem. 1996 Sep 13;271(37):22831-8. doi: 10.1074/jbc.271.37.22831.
Pubmed: 8798461
Park EI, Garrow TA: Interaction between dietary methionine and methyl donor intake on rat liver betaine-homocysteine methyltransferase gene expression and organization of the human gene. J Biol Chem. 1999 Mar 19;274(12):7816-24. doi: 10.1074/jbc.274.12.7816.
Pubmed: 10075673
Horikawa S, Tsukada K: Molecular cloning and developmental expression of a human kidney S-adenosylmethionine synthetase. FEBS Lett. 1992 Nov 2;312(1):37-41. doi: 10.1016/0014-5793(92)81405-b.
Pubmed: 1426236
Panayiotidis MI, Stabler SP, Ahmad A, Pappa A, Legros LH Jr, Hernandez-Saavedra D, Schneider BK, Allen RH, Vasiliou V, McCord JM, Kotb M, White CW: Activation of a novel isoform of methionine adenosyl transferase 2A and increased S-adenosylmethionine turnover in lung epithelial cells exposed to hyperoxia. Free Radic Biol Med. 2006 Jan 15;40(2):348-58. doi: 10.1016/j.freeradbiomed.2005.09.004. Epub 2005 Nov 18.
Pubmed: 16413417
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
LeGros L, Halim AB, Chamberlin ME, Geller A, Kotb M: Regulation of the human MAT2B gene encoding the regulatory beta subunit of methionine adenosyltransferase, MAT II. J Biol Chem. 2001 Jul 6;276(27):24918-24. doi: 10.1074/jbc.M102816200. Epub 2001 May 3.
Pubmed: 11337507
LeGros HL Jr, Halim AB, Geller AM, Kotb M: Cloning, expression, and functional characterization of the beta regulatory subunit of human methionine adenosyltransferase (MAT II). J Biol Chem. 2000 Jan 28;275(4):2359-66. doi: 10.1074/jbc.275.4.2359.
Pubmed: 10644686
Wiemann S, Weil B, Wellenreuther R, Gassenhuber J, Glassl S, Ansorge W, Bocher M, Blocker H, Bauersachs S, Blum H, Lauber J, Dusterhoft A, Beyer A, Kohrer K, Strack N, Mewes HW, Ottenwalder B, Obermaier B, Tampe J, Heubner D, Wambutt R, Korn B, Klein M, Poustka A: Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Res. 2001 Mar;11(3):422-35. doi: 10.1101/gr.gr1547r.
Pubmed: 11230166
Pakhomova S, Luka Z, Grohmann S, Wagner C, Newcomer ME: Glycine N-methyltransferases: a comparison of the crystal structures and kinetic properties of recombinant human, mouse and rat enzymes. Proteins. 2004 Nov 1;57(2):331-7. doi: 10.1002/prot.20209.
Pubmed: 15340920
Chen YM, Shiu JY, Tzeng SJ, Shih LS, Chen YJ, Lui WY, Chen PH: Characterization of glycine-N-methyltransferase-gene expression in human hepatocellular carcinoma. Int J Cancer. 1998 Mar 2;75(5):787-93. doi: 10.1002/(sici)1097-0215(19980302)75:5<787::aid-ijc20>3.0.co;2-2.
Pubmed: 9495250
Chen YM, Chen LY, Wong FH, Lee CM, Chang TJ, Yang-Feng TL: Genomic structure, expression, and chromosomal localization of the human glycine N-methyltransferase gene. Genomics. 2000 May 15;66(1):43-7. doi: 10.1006/geno.2000.6188.
Pubmed: 10843803
Garrow TA, Brenner AA, Whitehead VM, Chen XN, Duncan RG, Korenberg JR, Shane B: Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J Biol Chem. 1993 Jun 5;268(16):11910-6.
Pubmed: 8505317
Chave KJ, Snell K, Sanders PG: Isolation and characterisation of human genomic sequences encoding cytosolic serine hydroxymethyltransferase. Biochem Soc Trans. 1997 Feb;25(1):53S. doi: 10.1042/bst025053s.
Pubmed: 9056951
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings