Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Bile Acid Biosynthesis
Homo sapiens
Metabolic Pathway
Created: 2013-08-19
Last Updated: 2023-10-25
A bile acids life begins as cholesterol is catabolized, as bile acid is a derivative of cholesterol. This pathway occurs in the liver, beginning with cholesterol being converted to 7a-hydroxycholesterol through the enzyme cholesterol-7-alpha-monooxygenase, after being transported into the liver cell. 7a-hydroxycholesterol then becomes 7a-hydroxy-cholestene-3-one, which is made possible by the enzyme 3-beta-hydroxysteroid dehydrogenase type 7. 7a-hydroxy-cholestene-3-one then is used in two different chains of reactions. The first, continuing in the liver, uses the enzyme 3-oxo-5-beta-steroid-4-deydrogenase to become 7a-hydroxy-5b-cholestan-3-one. After that, aldo-keto reductase family 1 member C4 is used to create 3a,7a-dihydroxy-5b-cholestane. In the mitochondria of the cell, sterol 26-hydroxylase converts 3a,7a-dihydroxy-5b-cholestane to 3a,7a,26-trihydroxy-5b-cholestane, which is then converted to 3a,7a-dihydroxy-5b-cholestan-26-al by the same enzyme used in the previous reaction. This enzyme is used another time, to create 3a,7a-dihydroxycoprostanic acid. Then, bile acyl-CoA synthetase teams up with 3a,7a-dihydroxycoprostanic acid to create 3a,7a-dihydroxy-5b-cholestanoyl-CoA. 3a,7a-dihydroxy-5b-cholestanoyl-CoA remains intact while alpha-methylacyl-CoA racemase moves it along through the peroxisome. Peroxisomal acyl coenzyme A oxidase 2 converts 3a,7a-dihydroxy-5b-cholestanoyl-CoA into 3a,7a-dihydoxy-5b-cholest-24-enoyl-CoA. With the help of water, peroxisomal multifunctional enzyme type 2 turns 3a,7a-dihydoxy-5b-cholest-24-enoyl-CoA into 3a,7a,24-trihydoxy-5b-cholestanoyl-CoA. This compound then uses peroxisomal multifunctional enzyme type 2 to create chenodeoxycholoyl-CoA. From there, propionyl-CoA and chenodeoxycholoyl-CoA join forces and enlist the help of non-specific lipid transfer protein to further chenodeoxycholoyl-CoAâ€TMs journey in the peroxisome. It is then transported back into intracellular space, where after its used in 3 different reactions, its derivatives interact with intestinal microflora in the extracellular space to become lithocholyltaurine, lithocholic acid glycine conjugate, and lithocholic acid. Revisiting 7a-hydroxy-cholestene-3-one, the second chain of reactions it is involved in follows a similar path as the first, moving through the mitochondria, endoplasmic reticulum and peroxisome until choloyl-CoA is formed, which then is used in three reactions so that its derivatives may leave the cell to interact with intestinal microflora and become taurodeoxycholic acid, deoxycholic acid glycine conjugate and deoxycholic acid. There are two more important components of this pathway, both depicting the breakdown of cholesterol into bile acid. These components of the pathway occur in the endoplasmic reticulum membrane, although 2 enzymes, 25-hydroxycholesterol 7-alpha-hydroxylase and sterol 26 hydroxylase, are found in the mitochondria. Bile acids play a very important part in the digestion of foods, and are responsible for the absorption of water soluble vitamins in the small intestine. Bile acids also help absorb fats into the small intestine, a crucial part of any vertebrates diet.
References
Bile Acid Biosynthesis References
Lehninger, A.L. Lehninger principles of biochemistry (4th ed.) (2005). New York: W.H Freeman.
Lodish, H. et al. Molecular cell biology. (2004) New York: W.H Freeman.
Vance, D.E., and Vance, J.E. Biochemistry of lipids, lipoproteins, and membranes (4th ed.) (2002) Amsterdam; Boston: Elsevier.
Salway, J.G. Metabolism at a glance (3rd ed.) (2004). Alden, Mass.: Blackwell Pub.
Chiang JY: Bile acid metabolism and signaling. Compr Physiol. 2013 Jul;3(3):1191-212. doi: 10.1002/cphy.c120023.
Pubmed: 23897684
Allan D, Lohnes D: Cloning and developmental expression of mouse aldehyde reductase (AKR1A4). Mech Dev. 2000 Jun;94(1-2):271-5.
Pubmed: 10842086
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y: The transcriptional landscape of the mammalian genome. Science. 2005 Sep 2;309(5740):1559-63. doi: 10.1126/science.1112014.
Pubmed: 16141072
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP: A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010 Dec 23;143(7):1174-89. doi: 10.1016/j.cell.2010.12.001.
Pubmed: 21183079
Berger J, Truppe C, Neumann H, Forss-Petter S: A novel relative of the very-long-chain acyl-CoA synthetase and fatty acid transporter protein genes with a distinct expression pattern. Biochem Biophys Res Commun. 1998 Jun 18;247(2):255-60. doi: 10.1006/bbrc.1998.8770.
Pubmed: 9642112
Hirsch D, Stahl A, Lodish HF: A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8625-9. doi: 10.1073/pnas.95.15.8625.
Pubmed: 9671728
Kotti TJ, Savolainen K, Helander HM, Yagi A, Novikov DK, Kalkkinen N, Conzelmann E, Hiltunen JK, Schmitz W: In mouse alpha -methylacyl-CoA racemase, the same gene product is simultaneously located in mitochondria and peroxisomes. J Biol Chem. 2000 Jul 7;275(27):20887-95. doi: 10.1074/jbc.M002067200.
Pubmed: 10770938
Schmitz W, Helander HM, Hiltunen JK, Conzelmann E: Molecular cloning of cDNA species for rat and mouse liver alpha-methylacyl-CoA racemases. Biochem J. 1997 Sep 15;326 ( Pt 3):883-9. doi: 10.1042/bj3260883.
Pubmed: 9307041
Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, Lombard DB, Zhao Y: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013 Jun 27;50(6):919-30. doi: 10.1016/j.molcel.2013.06.001.
Pubmed: 23806337
Normand T, Husen B, Leenders F, Pelczar H, Baert JL, Begue A, Flourens AC, Adamski J, de Launoit Y: Molecular characterization of mouse 17 beta-hydroxysteroid dehydrogenase IV. J Steroid Biochem Mol Biol. 1995 Dec;55(5-6):541-8.
Pubmed: 8547180
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings