Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Gemcitabine Action Pathway (old)
Homo sapiens
Drug Action Pathway
Created: 2013-08-22
Last Updated: 2023-08-17
Gemcitabine is a cytidine analogue used in the treatment of certain cancers. Gemcitabine enters the cell via sodium nucleoside co-transporters (SLC29A1, SLC28A1, and SLC28A3), where it acts through multiple mechanisms to produce a cytotoxic effect. Gemcitabine is phosphorylated into gemcitabine monophosphate by deoxycytidine kinase, which is then subsequently phosphorylated into the diphosphate and triphosphate nucleotides by UMP-CMP kinase and nucleoside diphosphate kinase respectively. Gemcitabine diphosphate inhibits ribonucleoside-diphosphate reductase, a crucial enzyme in the conversion of ribonucleotides into deoxyribonucleotides for DNA synthesis. Gemcitabine triphosphate on the other hand can be incorporated into DNA, causing chain termination. Furthermore, gemcitabine monophosphate can be deaminated into difluoro-deoxyuridine monophosphate, which inhibits thymidylate synthase, an enzyme involved in the production of dTTP for DNA synthesis.
References
Gemcitabine Pathway (old) References
Plunkett W, Huang P, Searcy CE, Gandhi V: Gemcitabine: preclinical pharmacology and mechanisms of action. Semin Oncol. 1996 Oct;23(5 Suppl 10):3-15.
Pubmed: 8893876
Wong A, Soo RA, Yong WP, Innocenti F: Clinical pharmacology and pharmacogenetics of gemcitabine. Drug Metab Rev. 2009;41(2):77-88. doi: 10.1080/03602530902741828.
Pubmed: 19514966
Griffiths M, Beaumont N, Yao SY, Sundaram M, Boumah CE, Davies A, Kwong FY, Coe I, Cass CE, Young JD, Baldwin SA: Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat Med. 1997 Jan;3(1):89-93.
Pubmed: 8986748
Lum PY, Ngo LY, Bakken AH, Unadkat JD: Human intestinal es nucleoside transporter: molecular characterization and nucleoside inhibitory profiles. Cancer Chemother Pharmacol. 2000;45(4):273-8. doi: 10.1007/s002800050040.
Pubmed: 10755314
Sankar N, Machado J, Abdulla P, Hilliker AJ, Coe IR: Comparative genomic analysis of equilibrative nucleoside transporters suggests conserved protein structure despite limited sequence identity. Nucleic Acids Res. 2002 Oct 15;30(20):4339-50. doi: 10.1093/nar/gkf564.
Pubmed: 12384580
Ritzel MW, Yao SY, Huang MY, Elliott JF, Cass CE, Young JD: Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). Am J Physiol. 1997 Feb;272(2 Pt 1):C707-14. doi: 10.1152/ajpcell.1997.272.2.C707.
Pubmed: 9124315
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Zody MC, Garber M, Sharpe T, Young SK, Rowen L, O'Neill K, Whittaker CA, Kamal M, Chang JL, Cuomo CA, Dewar K, FitzGerald MG, Kodira CD, Madan A, Qin S, Yang X, Abbasi N, Abouelleil A, Arachchi HM, Baradarani L, Birditt B, Bloom S, Bloom T, Borowsky ML, Burke J, Butler J, Cook A, DeArellano K, DeCaprio D, Dorris L 3rd, Dors M, Eichler EE, Engels R, Fahey J, Fleetwood P, Friedman C, Gearin G, Hall JL, Hensley G, Johnson E, Jones C, Kamat A, Kaur A, Locke DP, Madan A, Munson G, Jaffe DB, Lui A, Macdonald P, Mauceli E, Naylor JW, Nesbitt R, Nicol R, O'Leary SB, Ratcliffe A, Rounsley S, She X, Sneddon KM, Stewart S, Sougnez C, Stone SM, Topham K, Vincent D, Wang S, Zimmer AR, Birren BW, Hood L, Lander ES, Nusbaum C: Analysis of the DNA sequence and duplication history of human chromosome 15. Nature. 2006 Mar 30;440(7084):671-5. doi: 10.1038/nature04601.
Pubmed: 16572171
Errasti-Murugarren E, Molina-Arcas M, Casado FJ, Pastor-Anglada M: A splice variant of the SLC28A3 gene encodes a novel human concentrative nucleoside transporter-3 (hCNT3) protein localized in the endoplasmic reticulum. FASEB J. 2009 Jan;23(1):172-82. doi: 10.1096/fj.08-113902. Epub 2008 Sep 30.
Pubmed: 18827020
Badagnani I, Chan W, Castro RA, Brett CM, Huang CC, Stryke D, Kawamoto M, Johns SJ, Ferrin TE, Carlson EJ, Burchard EG, Giacomini KM: Functional analysis of genetic variants in the human concentrative nucleoside transporter 3 (CNT3; SLC28A3). Pharmacogenomics J. 2005;5(3):157-65. doi: 10.1038/sj.tpj.6500303.
Pubmed: 15738947
Ritzel MW, Ng AM, Yao SY, Graham K, Loewen SK, Smith KM, Ritzel RG, Mowles DA, Carpenter P, Chen XZ, Karpinski E, Hyde RJ, Baldwin SA, Cass CE, Young JD: Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J Biol Chem. 2001 Jan 26;276(4):2914-27. doi: 10.1074/jbc.M007746200. Epub 2000 Oct 13.
Pubmed: 11032837
Takeishi K, Kaneda S, Ayusawa D, Shimizu K, Gotoh O, Seno T: Nucleotide sequence of a functional cDNA for human thymidylate synthase. Nucleic Acids Res. 1985 Mar 25;13(6):2035-43. doi: 10.1093/nar/13.6.2035.
Pubmed: 2987839
Kaneda S, Nalbantoglu J, Takeishi K, Shimizu K, Gotoh O, Seno T, Ayusawa D: Structural and functional analysis of the human thymidylate synthase gene. J Biol Chem. 1990 Nov 25;265(33):20277-84.
Pubmed: 2243092
Hisatomi H, Tanemura H, Iizuka T, Katsumata K, Nagao K, Sumida H, Udagawa H, Hikiji K: Differential alternative splicing expressions of thymidylate synthase isoforms. Cancer Lett. 2003 Apr 25;193(2):127-31. doi: 10.1016/s0304-3835(03)00005-3.
Pubmed: 12706868
Parker NJ, Begley CG, Fox RM: Human R1 subunit of ribonucleotide reductase (RRM1): 5' flanking region of the gene. Genomics. 1994 Jan 1;19(1):91-6. doi: 10.1006/geno.1994.1017.
Pubmed: 8188248
Parker NJ, Begley CG, Fox RM: Human M1 subunit of ribonucleotide reductase: cDNA sequence and expression in stimulated lymphocytes. Nucleic Acids Res. 1991 Jul 11;19(13):3741. doi: 10.1093/nar/19.13.3741.
Pubmed: 1840662
Pavloff N, Rivard D, Masson S, Shen SH, Mes-Masson AM: Sequence analysis of the large and small subunits of human ribonucleotide reductase. DNA Seq. 1992;2(4):227-34.
Pubmed: 1627826
Zhou B, Yen Y: Characterization of the human ribonucleotide reductase M2 subunit gene; genomic structure and promoter analyses. Cytogenet Cell Genet. 2001;95(1-2):52-9. doi: 10.1159/000057017.
Pubmed: 11978970
Tyynismaa H, Ylikallio E, Patel M, Molnar MJ, Haller RG, Suomalainen A: A heterozygous truncating mutation in RRM2B causes autosomal-dominant progressive external ophthalmoplegia with multiple mtDNA deletions. Am J Hum Genet. 2009 Aug;85(2):290-5. doi: 10.1016/j.ajhg.2009.07.009. Epub 2009 Aug 6.
Pubmed: 19664747
Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chretien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rotig A: Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet. 2007 Jun;39(6):776-80. doi: 10.1038/ng2040. Epub 2007 May 7.
Pubmed: 17486094
Bornstein B, Area E, Flanigan KM, Ganesh J, Jayakar P, Swoboda KJ, Coku J, Naini A, Shanske S, Tanji K, Hirano M, DiMauro S: Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene. Neuromuscul Disord. 2008 Jun;18(6):453-9. doi: 10.1016/j.nmd.2008.04.006. Epub 2008 May 27.
Pubmed: 18504129
Martin E, Palmic N, Sanquer S, Lenoir C, Hauck F, Mongellaz C, Fabrega S, Nitschke P, Esposti MD, Schwartzentruber J, Taylor N, Majewski J, Jabado N, Wynn RF, Picard C, Fischer A, Arkwright PD, Latour S: CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature. 2014 Jun 12;510(7504):288-92. doi: 10.1038/nature13386. Epub 2014 May 28.
Pubmed: 24870241
Yamauchi M, Yamauchi N, Meuth M: Molecular cloning of the human CTP synthetase gene by functional complementation with purified human metaphase chromosomes. EMBO J. 1990 Jul;9(7):2095-9.
Pubmed: 2113467
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings